Abstract

Transmission spectra of near-self-complementary metallic checkerboard patterns (MCPs) exhibit a drastic change when the metal squares are brought into contact with each other from a noncontact state. Transmission spectra of near-self-complementary samples, which are fabricated by printing technology, show rather gradual systematic change with changing the nominal metal square size while keeping the period because of randomness naturally introduced by the limited accuracy of the printer. The spectra have transmission-invariant frequencies, which means that the spectra are a superposition of two types of spectra, the ratio of which depends on the nominal square size. The correlation seen in the real and imaginary parts of the complex amplitude spectra can be interpreted based on the Kramers-Kronig relation. As an application of the sensitiveness of the transmission spectrum of the MCPs to connectivity of the metal squares, the revealing of an optically hidden pattern by a terahertz beam is demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Planar wallpaper group metamaterials for novel terahertz applications

Christopher M. Bingham, Hu Tao, Xianliang Liu, Richard D. Averitt, Xin Zhang, and Willie J. Padilla
Opt. Express 16(23) 18565-18575 (2008)

Polarized left-handed extraordinary optical transmission of subterahertz waves

Miguel Beruete, Miguel Navarro-Cía, Mario Sorolla, and Igor Campillo
Opt. Express 15(13) 8125-8134 (2007)

Broadband and energy-concentrating terahertz coherent perfect absorber based on a self-complementary metasurface

Yoshiro Urade, Yosuke Nakata, Toshihiro Nakanishi, and Masao Kitano
Opt. Lett. 41(19) 4472-4475 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (SPIE, 2008).
  2. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  3. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  4. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  5. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
    [Crossref] [PubMed]
  6. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
    [Crossref]
  7. C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
    [Crossref] [PubMed]
  8. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
    [Crossref]
  9. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [Crossref]
  10. D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39(19), 1222–1225 (1977).
    [Crossref]
  11. R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
    [Crossref]
  12. J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12(6), 063007 (2010).
    [Crossref]
  13. K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Stat. Sol. RRL 4(8-9), 218–220 (2010).
    [Crossref]
  14. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 3rd edition, 1999).
  15. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
    [Crossref]
  16. D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28(16), 3498–3510 (1989).
    [PubMed]
  17. Poynting for Optics, Fujitsu, “ http://jp.fujitsu.com/solutions/hpc/app/poynting/
  18. D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  20. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
    [Crossref]
  21. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
    [Crossref] [PubMed]
  22. Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).
  23. T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), L373–L375 (2003).
    [Crossref]
  24. M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: A review,” Int. J. Infrared Millim. Waves 26(12), 1661–1690 (2005).
    [Crossref]
  25. P. Atkins and J. de Paura, Elements of Physical Chemistry (Oxford University, Oxford, 2005).
  26. C. A. Davis, D. R. MacKenzie, and R. C. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun. 85(1), 70–82 (1991).
    [Crossref]
  27. M. Gajdardziska-Josifovska, R. C. McPhedran, D. R. McKenzie, and R. E. Collins, “Silver-magnesium fluoride cermet films. 2: Optical and electrical properties,” Appl. Opt. 28(14), 2744–2753 (1989).
    [Crossref] [PubMed]
  28. A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
    [Crossref]
  29. Y. Nakata, Y. Urada, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
    [Crossref]
  30. K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
    [Crossref]

2013 (1)

Y. Nakata, Y. Urada, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

2010 (3)

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12(6), 063007 (2010).
[Crossref]

K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Stat. Sol. RRL 4(8-9), 218–220 (2010).
[Crossref]

2009 (5)

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

2008 (5)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

2007 (1)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: A review,” Int. J. Infrared Millim. Waves 26(12), 1661–1690 (2005).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), L373–L375 (2003).
[Crossref]

1991 (1)

C. A. Davis, D. R. MacKenzie, and R. C. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun. 85(1), 70–82 (1991).
[Crossref]

1989 (2)

1984 (1)

R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
[Crossref]

1977 (1)

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39(19), 1222–1225 (1977).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Akiyama, K.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[Crossref] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beigang, R.

Bergman, D. J.

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39(19), 1222–1225 (1977).
[Crossref]

Bingham, C. M.

Blanco, M. M.

R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Collins, R. E.

Compton, R. C.

R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
[Crossref]

Davis, C. A.

C. A. Davis, D. R. MacKenzie, and R. C. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun. 85(1), 70–82 (1991).
[Crossref]

Dawes, D. H.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Edmunds, J. D.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12(6), 063007 (2010).
[Crossref]

Forchel, A.

Gajdardziska-Josifovska, M.

Giessen, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Hangyo, M.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: A review,” Int. J. Infrared Millim. Waves 26(12), 1661–1690 (2005).
[Crossref]

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), L373–L375 (2003).
[Crossref]

Heinrich, J.

Helm, H.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Hibbins, A. P.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12(6), 063007 (2010).
[Crossref]

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Höfling, S.

Imhof, C.

Imry, Y.

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39(19), 1222–1225 (1977).
[Crossref]

Juodkazis, S.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

Kasa, H.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

Kempa, K.

K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Stat. Sol. RRL 4(8-9), 218–220 (2010).
[Crossref]

Kern, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Kintaka, K.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

Kitano, M.

Y. Nakata, Y. Urada, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Kondo, T.

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), L373–L375 (2003).
[Crossref]

Lägel, B.

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Lee, M.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Liu, X.

Macfarlane, J. C.

R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
[Crossref]

MacKenzie, D. R.

C. A. Davis, D. R. MacKenzie, and R. C. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun. 85(1), 70–82 (1991).
[Crossref]

McKenzie, D. R.

McPhedran, R. C.

C. A. Davis, D. R. MacKenzie, and R. C. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun. 85(1), 70–82 (1991).
[Crossref]

D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28(16), 3498–3510 (1989).
[PubMed]

M. Gajdardziska-Josifovska, R. C. McPhedran, D. R. McKenzie, and R. E. Collins, “Silver-magnesium fluoride cermet films. 2: Optical and electrical properties,” Appl. Opt. 28(14), 2744–2753 (1989).
[Crossref] [PubMed]

R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
[Crossref]

Misawa, H.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Miyamaru, F.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

Mizeikis, V.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

Murazawa, N.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

Nagashima, T.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: A review,” Int. J. Infrared Millim. Waves 26(12), 1661–1690 (2005).
[Crossref]

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), L373–L375 (2003).
[Crossref]

Nakanishi, T.

Y. Nakata, Y. Urada, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Nakata, Y.

Y. Nakata, Y. Urada, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Nishii, J.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16(23), 18565–18575 (2008).
[Crossref] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Paul, O.

Rahm, M.

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Sambles, J. R.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12(6), 063007 (2010).
[Crossref]

Sasaki, K.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Shibuya, K.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Singh, R.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Takano, K.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

Tani, M.

M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: A review,” Int. J. Infrared Millim. Waves 26(12), 1661–1690 (2005).
[Crossref]

Tao, H.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Thoman, A.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Ueno, K.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Urada, Y.

Y. Nakata, Y. Urada, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Walther, M.

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Whitbourn, L. B.

D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, “Thin capacitive meshes on a dielectric boundary: theory and experiment,” Appl. Opt. 28(16), 3498–3510 (1989).
[PubMed]

R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
[Crossref]

Wolff, S.

Yokota, Y.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

Youngs, I. J.

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12(6), 063007 (2010).
[Crossref]

Zengerle, R.

Zhang, W.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

Zhang, X.

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Adv. Mater. (1)

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Appl. Opt. (2)

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
[Crossref]

Int. J. Infrared Millim. Waves (1)

M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: A review,” Int. J. Infrared Millim. Waves 26(12), 1661–1690 (2005).
[Crossref]

J. Am. Chem. Soc. (1)

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle Plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc. 130(22), 6928–6929 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[Crossref]

J. Photochem. Photobiol, A: Chem. (1)

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol, A: Chem. 207, 126–134 (2009).

Jpn. J. Appl. Phys. (1)

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), L373–L375 (2003).
[Crossref]

Nat. Photonics (3)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Nature (2)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

J. D. Edmunds, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Resonantly inverted microwave transmissivity threshold of metal grids,” New J. Phys. 12(6), 063007 (2010).
[Crossref]

Opt. Acta (Lond.) (1)

R. C. Compton, J. C. Macfarlane, L. B. Whitbourn, M. M. Blanco, and R. C. McPhedran, “Babinet’s principle applied to ideal beam-splitters for submillimetre waves,” Opt. Acta (Lond.) 31(5), 515–524 (1984).
[Crossref]

Opt. Commun. (1)

C. A. Davis, D. R. MacKenzie, and R. C. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun. 85(1), 70–82 (1991).
[Crossref]

Opt. Express (2)

Phys. Rev. B (4)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75(4), 041102 (2007).
[Crossref]

A. Thoman, A. Kern, H. Helm, and M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[Crossref]

Y. Nakata, Y. Urada, T. Nakanishi, and M. Kitano, “Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet’s principle,” Phys. Rev. B 88(20), 205138 (2013).
[Crossref]

Phys. Rev. Lett. (1)

D. J. Bergman and Y. Imry, “Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous material,” Phys. Rev. Lett. 39(19), 1222–1225 (1977).
[Crossref]

Phys. Stat. Sol. RRL (1)

K. Kempa, “Percolation effects in the checkerboard Babinet series of metamaterial structures,” Phys. Stat. Sol. RRL 4(8-9), 218–220 (2010).
[Crossref]

Other (5)

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 3rd edition, 1999).

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (SPIE, 2008).

Poynting for Optics, Fujitsu, “ http://jp.fujitsu.com/solutions/hpc/app/poynting/

D. Y. Smith, E. Shiles, and M. Inokuti, “The optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).

P. Atkins and J. de Paura, Elements of Physical Chemistry (Oxford University, Oxford, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of metallic checkerboard patterns.
Fig. 2
Fig. 2 Simulated transmission spectra of I-MCPs (solid) and C-MCPs (dashed) for (a) a perfect conductor and (b) a lossy metal. The inset is a unit cell from the simulated model. (c) Refractive index dispersion of the lossy metal used for simulation. The solid and dashed curves in (c) indicate the real and imaginary parts of the refractive index, respectively.
Fig. 3
Fig. 3 Typical photographs of the near self-complementary MCPs printed on the paper.
Fig. 4
Fig. 4 (a) Real and (b) imaginary parts of the amplitude transmission coefficients of the near self-complementary MCPs. (c) Real and (d) imaginary parts of t=A t d=0.71 +(1A) t d=0.70 , where t d=0.70 and t d=0.71 are the amplitude transmission coefficients simulated by the FDTD method.
Fig. 5
Fig. 5 (a) Real and (b) imaginary parts of the effective permittivities of the MCPs.
Fig. 6
Fig. 6 (a) Photograph of the MCP and (b) its transmission image at 0.08 THz, in which the characters “THz” are imbedded as regions with a square size slightly different from that of the background.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t 1 + t 2 =1.
T 1 + T 2 =1.
Z I =i ω L I 1 ω 2 L I C I , Z C =i ω 2 L C C C 1 ω C C .
t i = 2 2+ Z 0 / Z i , T i =| t i | 2 , (i=I,C).
Re[ t(ω) ]= t + 2 π P 0 sIm[ t(s) ] s 2 ω 2 ds, Im[ t(ω) ]= 2ω π P 0 Re[ t(s) ] s 2 ω 2 ds.

Metrics