Abstract

A highly stable Yb:KYW based dual crystal regenerative amplifier is demonstrated, which generates at 1 kHz 6.5-mJ pulses before and up to 4.7-mJ sub-ps pulses after compression with multilayer-dielectric gratings, respectively. The stretcher is compact and based on chirped-fiber Bragg gratings. In continuous-wave operation, 20 W are extracted with a slope efficiency of 40%. The experimental data are in agreement with detailed simulations of the laser dynamics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-crystal Yb:CALGO high power laser and regenerative amplifier

Anne-Laure Calendron
Opt. Express 21(22) 26174-26181 (2013)

High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier

Chun-Lin Chang, Peter Krogen, Kyung-Han Hong, Luis E. Zapata, Jeffrey Moses, Anne-Laure Calendron, Houkun Liang, Chien-Jen Lai, Gregory J. Stein, Phillip D. Keathley, Guillaume Laurent, and Franz X. Kärtner
Opt. Express 23(8) 10132-10144 (2015)

High pulse energy multiwatt Yb:CaAlGdO4 and Yb:CaF2 regenerative amplifiers

E. Caracciolo, M. Kemnitzer, A. Guandalini, F. Pirzio, A. Agnesi, and J. Aus der Au
Opt. Express 22(17) 19912-19918 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Zapata, H. Lin, H. Cankaya, A.-L. Calendron, W. Huang, K.-H. Hong, and F. X. Kaertner, “Cryogenic composite thin disk high energy pulsed, high average power, diffraction limited multi-pass amplifier,” Advanced Solid State Lasers Conference Proceedings, AF3A (2013).
  2. H. Cankaya, A.-L. Calendron, and F. X. Kärtner, “Passively CEP-stable front end for frequency synthesis,” Ultrafast Phenomena, 07.Mon.P1.58 (2014).
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).
  4. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, and V. P. Mikhailov, “Pulsed laser operation of Yb-dope d KY(WO(4)2 and KGd(WO(4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
    [Crossref] [PubMed]
  5. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007).
    [Crossref] [PubMed]
  6. M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
    [Crossref]
  7. A.-L. Calendron, “Dual-crystal Yb:CALGO high power laser and regenerative amplifier,” Opt. Express 21(22), 26174–26181 (2013), doi:.
    [Crossref] [PubMed]
  8. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  9. K. Ogawa, Y. Akahane, M. Aoyama, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, and K. Yamakawa, “Multi-millijoule, diode-pumped, cryogenically-cooled Yb:KY(WO4)2 chirped-pulse regenerative amplifier,” Opt. Express 15(14), 8598–8602 (2007).
    [Crossref] [PubMed]
  10. M. Delaigue, I. Manek-Hönninger, C. Hönninger, A. Courjaud, and E. Mottay, “1 mJ, multi-kHz, sub-500 fs Diode-pumped Ytterbium Laser Amplifier,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMT2.
    [Crossref]
  11. D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36(19), 3816–3818 (2011).
    [Crossref] [PubMed]
  12. C. P. João, J. Körner, M. Kahle, H. Liebetrau, R. Seifert, M. Lenski, S. Pastrik, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “Development of a 10 mJ-level optically synchronized picosecond Yb:KYW amplifier at 1040 nm for OPCPA pumping,” Proc. SPIE 8080, Diode-Pumped High Energy and High Power Lasers; ELI: Ultrarelativistic Laser-Matter Interactions and Petawatt Photonics; and HiPER: the European Pathway to Laser Energy, paper 808008 (June 09, 2011); doi:.
    [Crossref]
  13. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4(10), 1962–1969 (1987).
    [Crossref]
  14. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals,” Appl. Phys. B 106(3), 663–668 (2012).
    [Crossref]
  15. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  16. O. Svelto, “Principles of Lasers,” Springer, 4th ed. (1998).
  17. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
    [Crossref]
  18. A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
    [Crossref]
  19. M. Bache, H. Guo, B. Zhou, and X. Zheng, “The anisotropic Kerr nonlinear index of the beta-barium borate (β-BaB2O4) nonlinear crystal,” Opt. Mater. Express 3(3), 357–382 (2013).
    [Crossref]
  20. M. J. Weber, Handbook of Optical Materials, Vol. I (CRC Press, 2002).

2013 (2)

2012 (1)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals,” Appl. Phys. B 106(3), 663–668 (2012).
[Crossref]

2011 (1)

2009 (1)

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

2007 (3)

2006 (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

2004 (1)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

2003 (1)

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

1997 (1)

1987 (1)

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

Aitchison, J. S.

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

Akahane, Y.

Aoyama, M.

Bache, M.

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Bock, S.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

Boudeile, J.

Calendron, A.-L.

Camy, P.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Cormier, E.

Doualan, J. L.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

Druon, F.

D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36(19), 3816–3818 (2011).
[Crossref] [PubMed]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007).
[Crossref] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

Ferguson, A. I.

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Georges, P.

D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36(19), 3816–3818 (2011).
[Crossref] [PubMed]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007).
[Crossref] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Goldner, P.

Guo, H.

Hanna, M.

Kawanaka, J.

Kuleshov, N. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals,” Appl. Phys. B 106(3), 663–668 (2012).
[Crossref]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, and V. P. Mikhailov, “Pulsed laser operation of Yb-dope d KY(WO(4)2 and KGd(WO(4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
[Crossref] [PubMed]

Lagatsky, A. A.

Langford, N.

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

Loiko, P. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals,” Appl. Phys. B 106(3), 663–668 (2012).
[Crossref]

Lucas-Leclin, G.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

Magni, V.

Major, A.

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

Mikhailov, V. P.

Moncorgé, R.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

Nikolakakos, I.

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

Nishioka, H.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

Ogawa, K.

Papadopoulos, D. N.

Pavlyuk, A. A.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals,” Appl. Phys. B 106(3), 663–668 (2012).
[Crossref]

Pellegrina, A.

Petit, J.

Podlipensky, A. V.

Ramirez, L. P.

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

Schramm, U.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

Siebold, M.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

Smith, P. W. E.

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

Tokita, S.

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Tsuji, K.

Viana, B.

Xu, B.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

Yamakawa, K.

Yumashev, K. V.

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals,” Appl. Phys. B 106(3), 663–668 (2012).
[Crossref]

Zaouter, Y.

Zheng, X.

Zhou, B.

Appl. Phys. B (3)

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2 - a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals,” Appl. Phys. B 106(3), 663–668 (2012).
[Crossref]

A. Major, I. Nikolakakos, J. S. Aitchison, A. I. Ferguson, N. Langford, and P. W. E. Smith, “Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO4)2,” Appl. Phys. B 77(4), 433–436 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—part ii: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004).
[Crossref]

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

IEEE JSTQE (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+- Doped Solid-State Lasers,” IEEE JSTQE 13, 448 (2007).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (1)

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (6)

M. Delaigue, I. Manek-Hönninger, C. Hönninger, A. Courjaud, and E. Mottay, “1 mJ, multi-kHz, sub-500 fs Diode-pumped Ytterbium Laser Amplifier,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMT2.
[Crossref]

L. E. Zapata, H. Lin, H. Cankaya, A.-L. Calendron, W. Huang, K.-H. Hong, and F. X. Kaertner, “Cryogenic composite thin disk high energy pulsed, high average power, diffraction limited multi-pass amplifier,” Advanced Solid State Lasers Conference Proceedings, AF3A (2013).

H. Cankaya, A.-L. Calendron, and F. X. Kärtner, “Passively CEP-stable front end for frequency synthesis,” Ultrafast Phenomena, 07.Mon.P1.58 (2014).

M. J. Weber, Handbook of Optical Materials, Vol. I (CRC Press, 2002).

C. P. João, J. Körner, M. Kahle, H. Liebetrau, R. Seifert, M. Lenski, S. Pastrik, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud, “Development of a 10 mJ-level optically synchronized picosecond Yb:KYW amplifier at 1040 nm for OPCPA pumping,” Proc. SPIE 8080, Diode-Pumped High Energy and High Power Lasers; ELI: Ultrarelativistic Laser-Matter Interactions and Petawatt Photonics; and HiPER: the European Pathway to Laser Energy, paper 808008 (June 09, 2011); doi:.
[Crossref]

O. Svelto, “Principles of Lasers,” Springer, 4th ed. (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layout of the regenerative amplifier with stretcher and compressor. Osc stands for oscillator, C1-C3 circulators, CFBG1-4 chirped fiber Bragg gratings, FA1-2 fiber amplifiers, TFP thin-film polarizer, PC Pockels Cell, λ/4 quarter waveplate, λ/2 half-waveplates, M1-M8 high reflectors, DC dichroic mirrors, L lenses, PBS polarization beam splitter, XTAL crystals, LD laser diode, FI Faraday isolator, RM high reflector roof mirror, FM1-2 high reflector folding mirrors, G1-2 multi-dielectric layer gratings. OC, standing for output coupler, was an output coupler used for the characterization of the cavity in continuous-wave operation without the extension for the switching elements. S represents the symmetry point of the short cavity extending from M1 to OC; the extension from M4 to M7 is a 0-q transformation imaging the beam parameters from OC to M7.

Fig. 2
Fig. 2

Laser fluence and average inversion in the first crystal vs. time: (a) over 10 periods and (b) zoomed into one amplification cycle. The plain curves are the simulations with 17.2 cm−1 absorption coefficient and the dashed ones with 12.0 cm.1 absorption coefficient.

Fig. 3
Fig. 3

Characterization of the dual-crystal laser head in continuous-wave operation. (a): slope efficiency for different output couplers. (b): tuning curve obtained for 112 W pump power and 15% output coupling.

Fig. 4
Fig. 4

(a) Measurement of beam profile: the caustic corresponded to close to diffraction-limited beam with M2 < 1.1. (b) Beam profile in the focus.

Fig. 5
Fig. 5

Energy extracted in (a) cavity-dumped operation and (b) as regenerative amplifier versus incident pump power. The extraction time is set to 804 ns and 640 ns, respectively. (b) shows both simulation and experimental results.

Fig. 6
Fig. 6

(a) Spectra and (b) autocorrelation of regenerative amplifier output. The amplified spectrum, red plain curve, corresponds to the overlap of the seed spectrum (blue, dashed curve) and the output under cavity dumping operation (green, dashed dotted line). The autocorrelation is fitted to a Gaussian and the energy in the pedestals is calculated to be 15%. The inset shows the calculated autocorrelation of the transform-limited pulse profile corresponding to the measured spectrum.

Fig. 7
Fig. 7

Study of the stability of the regenerative amplifier. (a) Long term measurement of the energy with a Coherent energy meter. (b) Pointing measurement with a CCD camera in the focus of a 750 mm lens. The centroid is shown.

Tables (2)

Tables Icon

Table 1 Characteristics of different laser crystals.

Tables Icon

Table 2 Laser parameters used in the simulation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n i t = ( ( σ a , P + σ e , P ) n i + ( f L σ e , P σ a , P ) n T ) Φ P , i h ν P d t ( σ a , L + σ e , L ) Φ L h ν L d t n i n i + f L n T τ f
1 Φ P , i Φ P , i z = ( f L σ e , P σ a , P ) n T + ( σ a , P + σ e , P ) n i 1 + f L
1 Φ L Φ L z = σ e , L n i
1 Φ L Φ L t = 1 T R
D t h , a = A P a b s ( 1 η P ( ( 1 η I ) η r λ P λ F + η I λ P λ L ) )

Metrics