Abstract

A novel miniaturized Cr4+:YAG passively Q-switched Nd:YAG pulse-burst laser under 808 nm diode-laser pulse-pumping was demonstrated for the purpose of laser-induced plasma ignition, in which pulse-burst mode can realize both high repetition rate and high pulse energy simultaneously in a short period. Side-pumping configuration and two different types of laser cavities were employed. The pumping pulse width was constant at 250 μs. For the plane-plane cavity, the output beam profile was flat-top Gaussian and the measured M2 value was 4.1 at the maximum incident pump energy of 600 mJ. The pulse-burst laser contained a maximum of 8 pulses, 7 pulses and 6 pulses for pulse-burst repetition rate of 10 Hz, 50 Hz and 100 Hz, respectively. The energy obtained was 15.5 mJ, 14.9 mJ and 13.9 mJ per pulse for pulse-burst repetition rate of 10 Hz, 50 Hz and 100 Hz, respectively. The maximum repetition rate of laser pulses in pulse-burst was 34.6 kHz for 8 pulses at the incident pump energy of 600 mJ and the single pulse width was 13.3 ns. The thermal lensing effect of Nd:YAG rod was investigated, and an plane-convex cavity was adopted to compensate the thermal lensing effect of Nd:YAG rod and improve the mode matching. For the plane-convex cavity, the output beam profile was quasi-Gaussian and the measured M2 value was 2.2 at the incident pump energy of 600 mJ. The output energy was 10.6 mJ per pulse for pulse-burst repetition rate of 100 Hz. The maximum repetition rate of laser pulses in pulse-burst was 27.4 kHz for 6 pulses at the incident pump energy of 600 mJ and the single pulse width was 14.2 ns. The experimental results showed that this pulse-burst laser can produce high repetition rate (>20 kHz) and high pulse energy (>10 mJ) simultaneously in a short period for both two different cavities.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping

Yufei Ma, Ying He, Xin Yu, Xudong Li, Jiang Li, Renpeng Yan, Jiangbo Peng, Xinlu Zhang, Rui Sun, Yubai Pan, and Deying Chen
Opt. Express 23(19) 24955-24961 (2015)

Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition

Nicolaie Pavel, Masaki Tsunekane, and Takunori Taira
Opt. Express 19(10) 9378-9384 (2011)

High-energy pulse-burst laser system for megahertz-rate flow visualization

Pingfan P. Wu and Richard B. Miles
Opt. Lett. 25(22) 1639-1641 (2000)

References

  • View by:
  • |
  • |
  • |

  1. T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
    [Crossref]
  2. M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).
  3. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  4. M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, “Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy,” Opt. Express 12(19), 4546–4557 (2004).
    [Crossref] [PubMed]
  5. I. G. Dors and C. G. Parigger, “Computational fluid-dynamic model of laser-induced breakdown in air,” Appl. Opt. 42(30), 5978–5985 (2003).
    [Crossref] [PubMed]
  6. Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
    [Crossref]
  7. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  8. Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
    [Crossref]
  9. J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
    [Crossref]
  10. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [Crossref]
  11. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [Crossref]
  12. A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
    [Crossref]
  13. P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett. 25(22), 1639–1641 (2000).
    [Crossref] [PubMed]
  14. Y. F. Ma, X. Yu, X. D. Li, R. W. Fan, and J. H. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
    [Crossref] [PubMed]
  15. J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
    [Crossref]
  16. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999).
    [Crossref]

2012 (1)

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

2011 (2)

2010 (1)

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

2009 (2)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

2008 (2)

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

2007 (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

2006 (1)

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

2005 (1)

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

2004 (1)

2003 (1)

2002 (1)

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

2000 (1)

1999 (1)

Agnesi, A.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

An, J.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Braun, B.

Charareh, S.

Chen, Y.-F.

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

Dallocchio, P.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Dors, I. G.

Fan, R. W.

Fluck, R.

Franz, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Gini, E.

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Iskra, K.

Kan, H.

Keller, U.

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kofler, H.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kopecek, H.

Kroupa, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Lackner, M.

Lan, Y. P.

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

Li, D. C.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Li, G. Q.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Li, L.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Li, M.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Li, X. D.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, X. D. Li, R. W. Fan, and J. H. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
[Crossref] [PubMed]

Li, Y. F.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Liu, J.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Liu, M.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Liu, S. H.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Liu, S. S.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Ma, Y. F.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, X. D. Li, R. W. Fan, and J. H. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
[Crossref] [PubMed]

Miles, R. B.

Moser, M.

Neger, T.

Parigger, C. G.

Paschotta, R.

Pavel, N.

Phuoc, T. X.

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

Pirzio, F.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Reali, G.

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Rüdisser, D.

Sakai, H.

Spühler, G. J.

Taira, T.

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tauer, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tian, W. M.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Tittel, F. K.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Tsunekane, M.

Wang, C.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Wang, C. H.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Wang, J.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Weinrotter, M.

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

Winkelhofer, E.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Winter, F.

Wintner, E.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

M. Lackner, S. Charareh, F. Winter, K. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, “Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy,” Opt. Express 12(19), 4546–4557 (2004).
[Crossref] [PubMed]

Wu, P. P.

Yan, R. P.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Yang, K. J.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Yu, J. H.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, X. D. Li, R. W. Fan, and J. H. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
[Crossref] [PubMed]

Yu, X.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, X. D. Li, R. W. Fan, and J. H. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
[Crossref] [PubMed]

Yu, Z. G.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Zhang, G.

Zhao, S. Z.

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (3)

A. Agnesi, P. Dallocchio, F. Pirzio, and G. Reali, “Sub-nanosecond single-frequency 10-kHz diode-pumped MOPA laser,” Appl. Phys. B 98(4), 737–741 (2010).
[Crossref]

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y.-F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[Crossref]

J. Mod. Opt. (1)

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (3)

J. An, S. Z. Zhao, Y. F. Li, G. Q. Li, K. J. Yang, D. C. Li, J. Wang, M. Li, and Z. G. Yu, “LD-pumped passively Q-switched Nd:LuVO4 laser with a GaAs output coupler,” Laser Phys. Lett. 6(5), 351–354 (2009).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

M. Weinrotter, H. Kopecek, and E. Wintner, “Laser ignition of engines,” Laser Phys. Lett. 15, 947–953 (2005).

Opt. Eng. (1)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the passively Q-switched Nd:YAG laser and the setup for thermal lensing measurement.
Fig. 2
Fig. 2 The output energy without Q-switching as a function of incident pump energy at three different repetition rates.
Fig. 3
Fig. 3 The output energy without Q-switching as a function of incident pump energy with different transmissions of M2.
Fig. 4
Fig. 4 The output energy without Q-switching as a function of incident pump energy at three different repetition rates.
Fig. 5
Fig. 5 The output energy and pulse width of passively Q-switched laser as a function of initial transmission of Cr4+:YAG.
Fig. 6
Fig. 6 The output energy of passively Q-switched laser as a function of incident pump energy.
Fig. 7
Fig. 7 The repetition rate of laser pulses in pulse-burst as a function of pulse number for Cr4+:YAG passively Q-switched laser.
Fig. 8
Fig. 8 The oscilloscope trace for pulse-burst and single pulse of Cr4+:YAG passively Q-switched laser.
Fig. 9
Fig. 9 The beam profile of He-Ne laser passed through the Nd:YAG rod under different incident pump energy and repetition rates.
Fig. 10
Fig. 10 Thermal focal length as a function of incident pump energy under two different repetition rates.
Fig. 11
Fig. 11 The output energy without Q-switching as a function of incident pump energy at three different repetition rates using plane-convex cavity.
Fig. 12
Fig. 12 Laser beam profile at the incident pump energy of 600 mJ: (a) plane-plane cavity; (b) plane-convex cavity.
Fig. 13
Fig. 13 Output performance of plane-convex cavity: (a) output energy as a function of incident pump energy; (b) repetition rate of laser pulses in pulse-burst as a function of pulse number.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R opt =Λ f t ( L 0 L 1 f t L 0 ) f t ( L 1 + L 2 ) L 1 L 2
L 0 = L 2 + L 1 (1 L 2 f t )

Metrics