Abstract

We demonstrate infrared light emission from thin epitaxially-grown In(Ga)Sb layers in InAs(Sb) matrices across a wide range (3-8µm) of the mid-infrared spectral range. Our structures are characterized by x-ray diffraction, photoelectron spectroscopy, atomic force microscopy and transmission electron microscopy. Emission is characterized by temperature- and power-dependent infrared step-scan photoluminescence spectroscopy. The epitaxial In(Ga)Sb layers are observed to form either quantum wells, quantum dots, or disordered quantum wells, depending on the insertion layer and substrate material composition. The observed optical properties of the monolayer-scale insertions are correlated to their structural properties, as determined by transmission electron and atomic force microscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures

Oscar Gustafsson, Amir Karim, Jesper Berggren, Qin Wang, Carl Reuterskiöld-Hedlund, Christopher Ernerheim-Jokumsen, Markus Soldemo, Jonas Weissenrieder, Sirpa Persson, Susanne Almqvist, Ulf Ekenberg, Bertrand Noharet, Carl Asplund, Mats Göthelid, Jan Y. Andersson, and Mattias Hammar
Opt. Express 20(19) 21264-21271 (2012)

Long-wavelength infrared (~10-15 μm) electroluminescence from Sb-based interband cascade devices

D. Zhang, E. Dupont, R. Q. Yang, H. C. Liu, C.-H. Lin, M. Buchanan, and S. S. Pei
Opt. Express 1(4) 97-101 (1997)

Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo
Opt. Express 22(16) 18860-18869 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
    [Crossref]
  2. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  3. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
    [Crossref]
  4. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
    [Crossref]
  5. D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
    [Crossref]
  6. J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting below 3 μm,” Appl. Phys. Lett. 90(11), 111118 (2007).
    [Crossref]
  7. Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
    [Crossref]
  8. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
    [Crossref]
  9. Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
    [Crossref]
  10. J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
    [Crossref]
  11. R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
    [Crossref]
  12. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
    [Crossref]
  13. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
    [Crossref]
  14. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 34(1), 147–156 (1998).
    [Crossref]
  15. C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).
  16. W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
    [Crossref] [PubMed]
  17. G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011).
    [Crossref]
  18. Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
    [Crossref]
  19. D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
    [Crossref]
  20. Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
    [Crossref]
  21. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
    [Crossref]
  22. R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3-6 µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
    [Crossref]
  23. P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
    [Crossref]
  24. D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
    [Crossref]
  25. K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
    [Crossref]
  26. S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
    [Crossref]
  27. Q. Zhuang, P. J. Carrington, and A. Krier, “Growth optimization of self-organized InSb/InAs quantum dots,” J. Phys. D Appl. Phys. 41(23), 232003 (2008).
    [Crossref]
  28. F. Hatami, S. M. Kim, H. B. Yuen, and J. S. Harris, “InSb and InSb:N multiple quantum dots,” Appl. Phys. Lett. 89(13), 133115 (2006).
    [Crossref]
  29. S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
    [Crossref]
  30. P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
    [Crossref]
  31. Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
    [Crossref]
  32. A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
    [Crossref]
  33. O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Reuterskiöld-Hedlund, C. Ernerheim-Jokumsen, M. Soldemo, J. Weissenrieder, S. Persson, S. Almqvist, U. Ekenberg, B. Noharet, C. Asplund, M. Göthelid, J. Y. Andersson, and M. Hammar, “Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures,” Opt. Express 20(19), 21264–21271 (2012).
    [Crossref] [PubMed]
  34. O. Gustafsson, A. Karim, Q. Wang, J. Berggren, C. Asplund, J. Y. Andersson, and M. Hammar, “Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots,” Infrared Phys. Technol. 59, 89–92 (2013).
    [Crossref]
  35. S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
    [Crossref]
  36. J. R. Waterman, B. V. Shanabrook, and R. J. Wagner, “Reflection high-energy electron diffraction study of Sb incorporation during molecular-beam epitaxy growth of GaSb and AlSb,” J. Vac. Sci. Technol. B 10(2), 895–897 (1992).
    [Crossref]
  37. K. R. Evans, C. E. Stutz, P. W. Yu, and C. R. Wie, “Massspectrometric determination of antimony incorporation during III–V molecular beam epitaxy,” J. Vac. Sci. Technol. B 8(2), 271–275 (1990).
    [Crossref]
  38. O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
    [Crossref]
  39. N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
    [Crossref]
  40. S.-H. Wei and A. Zunger, “InAsSb/InAs: A type-I or a type-II band alignment,” Phys. Rev. B Condens. Matter 52(16), 12039–12044 (1995).
    [Crossref] [PubMed]

2014 (1)

Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
[Crossref]

2013 (2)

O. Gustafsson, A. Karim, Q. Wang, J. Berggren, C. Asplund, J. Y. Andersson, and M. Hammar, “Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots,” Infrared Phys. Technol. 59, 89–92 (2013).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

2012 (7)

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
[Crossref]

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Reuterskiöld-Hedlund, C. Ernerheim-Jokumsen, M. Soldemo, J. Weissenrieder, S. Persson, S. Almqvist, U. Ekenberg, B. Noharet, C. Asplund, M. Göthelid, J. Y. Andersson, and M. Hammar, “Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures,” Opt. Express 20(19), 21264–21271 (2012).
[Crossref] [PubMed]

2011 (4)

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011).
[Crossref]

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

2009 (2)

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

2008 (4)

Q. Zhuang, P. J. Carrington, and A. Krier, “Growth optimization of self-organized InSb/InAs quantum dots,” J. Phys. D Appl. Phys. 41(23), 232003 (2008).
[Crossref]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

2007 (5)

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting below 3 μm,” Appl. Phys. Lett. 90(11), 111118 (2007).
[Crossref]

J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[Crossref]

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

2006 (4)

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
[Crossref]

F. Hatami, S. M. Kim, H. B. Yuen, and J. S. Harris, “InSb and InSb:N multiple quantum dots,” Appl. Phys. Lett. 89(13), 133115 (2006).
[Crossref]

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

2005 (1)

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

2002 (1)

R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
[Crossref]

2001 (2)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

1998 (2)

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 34(1), 147–156 (1998).
[Crossref]

1997 (1)

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3-6 µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

1995 (1)

S.-H. Wei and A. Zunger, “InAsSb/InAs: A type-I or a type-II band alignment,” Phys. Rev. B Condens. Matter 52(16), 12039–12044 (1995).
[Crossref] [PubMed]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

1992 (1)

J. R. Waterman, B. V. Shanabrook, and R. J. Wagner, “Reflection high-energy electron diffraction study of Sb incorporation during molecular-beam epitaxy growth of GaSb and AlSb,” J. Vac. Sci. Technol. B 10(2), 895–897 (1992).
[Crossref]

1990 (1)

K. R. Evans, C. E. Stutz, P. W. Yu, and C. R. Wie, “Massspectrometric determination of antimony incorporation during III–V molecular beam epitaxy,” J. Vac. Sci. Technol. B 8(2), 271–275 (1990).
[Crossref]

Abell, J.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Airey, R. J.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Alfaro-Martinez, A.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

Allerman, A. A.

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3-6 µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

Almqvist, S.

Anderson, J.

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Andersson, J. Y.

Ankudinov, A. V.

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Asplund, C.

Aung, N. L.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Bai, Y.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Balakrishnan, G.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Bandyopadhyay, N.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Baranov, A. N.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting below 3 μm,” Appl. Phys. Lett. 90(11), 111118 (2007).
[Crossref]

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Belenky, G.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011).
[Crossref]

Berggren, J.

Bewley, W. W.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Biefeld, R. M.

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3-6 µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

Bradshaw, J. L.

R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
[Crossref]

Bruno, J. D.

R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
[Crossref]

Canedy, C. L.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Cao, Y. Y.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Capasso, F.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Carrington, P. J.

Q. Zhuang, P. J. Carrington, and A. Krier, “Growth optimization of self-organized InSb/InAs quantum dots,” J. Phys. D Appl. Phys. 41(23), 232003 (2008).
[Crossref]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
[Crossref]

Cathabard, O.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting below 3 μm,” Appl. Phys. Lett. 90(11), 111118 (2007).
[Crossref]

Charles, W. O.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

Chen, X. Y.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

Chiu, Y.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Cho, A. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Chu, S. N. G.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Cockburn, J. W.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Dawson, L. R.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Deguffroy, N.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Devenson, J.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting below 3 μm,” Appl. Phys. Lett. 90(11), 111118 (2007).
[Crossref]

Dikmelik, Y.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Dunaevskii, M. S.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Ekenberg, U.

Ernerheim-Jokumsen, C.

Evans, K. R.

K. R. Evans, C. E. Stutz, P. W. Yu, and C. R. Wie, “Massspectrometric determination of antimony incorporation during III–V molecular beam epitaxy,” J. Vac. Sci. Technol. B 8(2), 271–275 (1990).
[Crossref]

Ezersky, V.

S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
[Crossref]

Faist, J.

J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Fang, X.

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Franz, K. J.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

Gmachl, C.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Gmachl, C. F.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

Göthelid, M.

Gu, Y.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Gushchina, E. V.

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Gustafsson, O.

O. Gustafsson, A. Karim, Q. Wang, J. Berggren, C. Asplund, J. Y. Andersson, and M. Hammar, “Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots,” Infrared Phys. Technol. 59, 89–92 (2013).
[Crossref]

O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Reuterskiöld-Hedlund, C. Ernerheim-Jokumsen, M. Soldemo, J. Weissenrieder, S. Persson, S. Almqvist, U. Ekenberg, B. Noharet, C. Asplund, M. Göthelid, J. Y. Andersson, and M. Hammar, “Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures,” Opt. Express 20(19), 21264–21271 (2012).
[Crossref] [PubMed]

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Hammar, M.

O. Gustafsson, A. Karim, Q. Wang, J. Berggren, C. Asplund, J. Y. Andersson, and M. Hammar, “Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots,” Infrared Phys. Technol. 59, 89–92 (2013).
[Crossref]

O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Reuterskiöld-Hedlund, C. Ernerheim-Jokumsen, M. Soldemo, J. Weissenrieder, S. Persson, S. Almqvist, U. Ekenberg, B. Noharet, C. Asplund, M. Göthelid, J. Y. Andersson, and M. Hammar, “Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures,” Opt. Express 20(19), 21264–21271 (2012).
[Crossref] [PubMed]

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Hardaway, H.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Harris, J. S.

F. Hatami, S. M. Kim, H. B. Yuen, and J. S. Harris, “InSb and InSb:N multiple quantum dots,” Appl. Phys. Lett. 89(13), 133115 (2006).
[Crossref]

Hart, L.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Hatami, F.

F. Hatami, S. M. Kim, H. B. Yuen, and J. S. Harris, “InSb and InSb:N multiple quantum dots,” Appl. Phys. Lett. 89(13), 133115 (2006).
[Crossref]

Hayton, J.

Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
[Crossref]

Heber, J.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hopkinson, M.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Hosoda, T.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011).
[Crossref]

Huang, S. H.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Huffaker, D. L.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Hussain, L.

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Ivanov, S. V.

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
[Crossref]

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Jallipalli, A.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Jung, D.

D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
[Crossref]

Karim, A.

O. Gustafsson, A. Karim, Q. Wang, J. Berggren, C. Asplund, J. Y. Andersson, and M. Hammar, “Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots,” Infrared Phys. Technol. 59, 89–92 (2013).
[Crossref]

O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Reuterskiöld-Hedlund, C. Ernerheim-Jokumsen, M. Soldemo, J. Weissenrieder, S. Persson, S. Almqvist, U. Ekenberg, B. Noharet, C. Asplund, M. Göthelid, J. Y. Andersson, and M. Hammar, “Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures,” Opt. Express 20(19), 21264–21271 (2012).
[Crossref] [PubMed]

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Khoshakhlagh, A.

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

Khurgin, J. B.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Kim, C. S.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Kim, M.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Kim, S. M.

F. Hatami, S. M. Kim, H. B. Yuen, and J. S. Harris, “InSb and InSb:N multiple quantum dots,” Appl. Phys. Lett. 89(13), 133115 (2006).
[Crossref]

Kipshidze, G.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011).
[Crossref]

Kop’ev, P. S.

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Krier, A.

Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
[Crossref]

Q. Zhuang, P. J. Carrington, and A. Krier, “Growth optimization of self-organized InSb/InAs quantum dots,” J. Phys. D Appl. Phys. 41(23), 232003 (2008).
[Crossref]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
[Crossref]

Krysa, A. B.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Kurtz, S. R.

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3-6 µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

Lackner, D.

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

Larrabee, D. C.

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Lee, M. L.

D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
[Crossref]

Li, A. Z.

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Li, C.

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Li, H.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

Li, Y. Y.

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Liu, P. Q.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

Lu, Q.

Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
[Crossref]

Lyublinskaya, O. G.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Meltser, B. Y.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Menzel, S.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Merritt, C. D.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

Meyer, J. R.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 34(1), 147–156 (1998).
[Crossref]

Mikhailova, M. P.

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Moiseev, K. D.

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Noharet, B.

Nolde, J. a.

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Paltiel, Y.

S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
[Crossref]

Parkhomenko, Y. A.

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Persson, S.

Pham, J. T.

R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
[Crossref]

Phillips, C. C.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Pitts, O. J.

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

Prokopova, L. A.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

Prokopova, L. G.

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Pullin, M. J.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 34(1), 147–156 (1998).
[Crossref]

Ramonda, M.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Razeghi, M.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Reuterskiöld-Hedlund, C.

Revin, D. G.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Rosenwaks, Y.

S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
[Crossref]

Rykhova, O. V.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

Satpati, B.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Sauer, R.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

Semenov, A. N.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Shanabrook, B. V.

J. R. Waterman, B. V. Shanabrook, and R. J. Wagner, “Reflection high-energy electron diffraction study of Sb incorporation during molecular-beam epitaxy growth of GaSb and AlSb,” J. Vac. Sci. Technol. B 10(2), 895–897 (1992).
[Crossref]

Shen, A.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

Sher, A.

S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
[Crossref]

Shterengas, L.

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011).
[Crossref]

Shusterman, S.

S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Sitnikova, A. A.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Slivken, S.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

Soldemo, M.

Solov’ev, V. A.

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
[Crossref]

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Song, J.

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Song, Y.

D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
[Crossref]

Steer, M. J.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Steger, M.

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

Stradling, R. A.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Stutz, C. E.

K. R. Evans, C. E. Stutz, P. W. Yu, and C. R. Wie, “Massspectrometric determination of antimony incorporation during III–V molecular beam epitaxy,” J. Vac. Sci. Technol. B 8(2), 271–275 (1990).
[Crossref]

Tamargo, M. C.

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

Tang, P. J. P.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Tasco, V.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Teissier, R.

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting below 3 μm,” Appl. Phys. Lett. 90(11), 111118 (2007).
[Crossref]

Terent’ev, Y. V.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Thewalt, M. L. W.

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

Thonke, K.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

Titkov, A.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Titkov, A. N.

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Toropov, A. A.

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Tournié, E.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Trampert, A.

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

Usikova, A. A.

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

Vurgaftman, I.

W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, I. Vurgaftman, and J. R. Meyer, “Continuous-wave interband cascade lasers operating above room temperature at λ = 4.7-5.6 μm,” Opt. Express 20(3), 3235–3240 (2012).
[Crossref] [PubMed]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 34(1), 147–156 (1998).
[Crossref]

Wagner, R. J.

J. R. Waterman, B. V. Shanabrook, and R. J. Wagner, “Reflection high-energy electron diffraction study of Sb incorporation during molecular-beam epitaxy growth of GaSb and AlSb,” J. Vac. Sci. Technol. B 10(2), 895–897 (1992).
[Crossref]

Wang, K.

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Wang, Q.

O. Gustafsson, A. Karim, Q. Wang, J. Berggren, C. Asplund, J. Y. Andersson, and M. Hammar, “Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots,” Infrared Phys. Technol. 59, 89–92 (2013).
[Crossref]

O. Gustafsson, A. Karim, J. Berggren, Q. Wang, C. Reuterskiöld-Hedlund, C. Ernerheim-Jokumsen, M. Soldemo, J. Weissenrieder, S. Persson, S. Almqvist, U. Ekenberg, B. Noharet, C. Asplund, M. Göthelid, J. Y. Andersson, and M. Hammar, “Photoluminescence and photoresponse from InSb/InAs-based quantum dot structures,” Opt. Express 20(19), 21264–21271 (2012).
[Crossref] [PubMed]

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Wasserman, D.

D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
[Crossref]

Waterman, J. R.

J. R. Waterman, B. V. Shanabrook, and R. J. Wagner, “Reflection high-energy electron diffraction study of Sb incorporation during molecular-beam epitaxy growth of GaSb and AlSb,” J. Vac. Sci. Technol. B 10(2), 895–897 (1992).
[Crossref]

Watkins, S. P.

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

Wei, S.-H.

S.-H. Wei and A. Zunger, “InAsSb/InAs: A type-I or a type-II band alignment,” Phys. Rev. B Condens. Matter 52(16), 12039–12044 (1995).
[Crossref] [PubMed]

Weissenrieder, J.

Wie, C. R.

K. R. Evans, C. E. Stutz, P. W. Yu, and C. R. Wie, “Massspectrometric determination of antimony incorporation during III–V molecular beam epitaxy,” J. Vac. Sci. Technol. B 8(2), 271–275 (1990).
[Crossref]

Wilson, L. R.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

Wortman, D. E.

R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
[Crossref]

Yakovlev, Y. P.

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Yang, A.

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

Yang, R. Q.

R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

Yin, M.

Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
[Crossref]

Yu, L.

D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
[Crossref]

Yu, P. W.

K. R. Evans, C. E. Stutz, P. W. Yu, and C. R. Wie, “Massspectrometric determination of antimony incorporation during III–V molecular beam epitaxy,” J. Vac. Sci. Technol. B 8(2), 271–275 (1990).
[Crossref]

Yuen, H. B.

F. Hatami, S. M. Kim, H. B. Yuen, and J. S. Harris, “InSb and InSb:N multiple quantum dots,” Appl. Phys. Lett. 89(13), 133115 (2006).
[Crossref]

Yuen, W. T.

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

Zhang, Y. G.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

Zhou, L.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

Zhuang, Q.

Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
[Crossref]

Q. Zhuang, P. J. Carrington, and A. Krier, “Growth optimization of self-organized InSb/InAs quantum dots,” J. Phys. D Appl. Phys. 41(23), 232003 (2008).
[Crossref]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
[Crossref]

Zunger, A.

S.-H. Wei and A. Zunger, “InAsSb/InAs: A type-I or a type-II band alignment,” Phys. Rev. B Condens. Matter 52(16), 12039–12044 (1995).
[Crossref] [PubMed]

Appl. Phys. Lett. (17)

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett. 100(21), 212104 (2012).
[Crossref]

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93(2), 021103 (2008).
[Crossref]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90(2), 021108 (2007).
[Crossref]

J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting below 3 μm,” Appl. Phys. Lett. 90(11), 111118 (2007).
[Crossref]

Y. Yao, A. Alfaro-Martinez, K. J. Franz, W. O. Charles, A. Shen, M. C. Tamargo, and C. F. Gmachl, “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ZnCdMgSe quantum cascade laser structures,” Appl. Phys. Lett. 99(4), 041113 (2011).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, S. N. G. Chu, and A. Y. Cho, “Quantum cascade laser: Temperature dependence of the performance characteristics and high T0 operation,” Appl. Phys. Lett. 65(23), 2901 (1994).
[Crossref]

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101(17), 171117 (2012).
[Crossref]

J. Faist, “Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits,” Appl. Phys. Lett. 90(25), 253512 (2007).
[Crossref]

Y. Gu, Y. G. Zhang, K. Wang, X. Fang, C. Li, Y. Y. Cao, A. Z. Li, and Y. Y. Li, “InP-based InAs/InGaAs quantum wells with type-I emission beyond 3 μm,” Appl. Phys. Lett. 99(8), 081914 (2011).
[Crossref]

D. Jung, Y. Song, L. Yu, D. Wasserman, and M. L. Lee, “2.8 μm emission from type-I quantum wells grown on InAsxP1−x/InP metamorphic graded buffers,” Appl. Phys. Lett. 101(25), 251107 (2012).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7 μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102(20), 201111 (2013).
[Crossref]

P. J. P. Tang, H. Hardaway, J. Heber, C. C. Phillips, M. J. Pullin, R. A. Stradling, W. T. Yuen, and L. Hart, “Efficient 300 K light-emitting diodes at λ~5 and ~8 µm from InAs/In(As1-xSbx) single quantum wells,” Appl. Phys. Lett. 72(26), 3473 (1998).
[Crossref]

D. Lackner, O. J. Pitts, M. Steger, A. Yang, M. L. W. Thewalt, and S. P. Watkins, “Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 µm,” Appl. Phys. Lett. 95(8), 081906 (2009).
[Crossref]

F. Hatami, S. M. Kim, H. B. Yuen, and J. S. Harris, “InSb and InSb:N multiple quantum dots,” Appl. Phys. Lett. 89(13), 133115 (2006).
[Crossref]

P. J. Carrington, V. A. Solov’ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Appl. Phys. Lett. 93(9), 091101 (2008).
[Crossref]

Q. Lu, Q. Zhuang, J. Hayton, M. Yin, and A. Krier, “Gain and tuning characteristics of mid-infrared InSb quantum dot diode lasers,” Appl. Phys. Lett. 105(3), 031115 (2014).
[Crossref]

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Appl. Phys. Lett. 88(13), 131911 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

R. M. Biefeld, S. R. Kurtz, and A. A. Allerman, “The metal-organic chemical vapor deposition growth and properties of InAsSb mid-infrared (3-6 µm) lasers and LED’s,” IEEE J. Sel. Top. Quantum Electron. 3(3), 739–748 (1997).
[Crossref]

G. Belenky, L. Shterengas, G. Kipshidze, and T. Hosoda, “Type-I diode lasers for spectral region above 3 μm,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1426–1434 (2011).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, J. R. Lindle, C. D. Merritt, J. Abell, and J. R. Meyer, “Mid-IR type-II interband cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1435–1444 (2011).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Mid-IR vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 34(1), 147–156 (1998).
[Crossref]

Infrared Phys. Technol. (1)

O. Gustafsson, A. Karim, Q. Wang, J. Berggren, C. Asplund, J. Y. Andersson, and M. Hammar, “Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots,” Infrared Phys. Technol. 59, 89–92 (2013).
[Crossref]

J. Appl. Phys. (3)

O. G. Lyublinskaya, V. A. Solov’ev, A. N. Semenov, B. Y. Meltser, Y. V. Terent’ev, L. A. Prokopova, A. A. Toropov, A. A. Sitnikova, O. V. Rykhova, S. V. Ivanov, K. Thonke, and R. Sauer, “Temperature-dependent photoluminescence from type-II InSb/InAs quantum dots,” J. Appl. Phys. 99(9), 093517 (2006).
[Crossref]

N. Deguffroy, V. Tasco, A. N. Baranov, E. Tournié, B. Satpati, A. Trampert, M. S. Dunaevskii, A. Titkov, and M. Ramonda, “Molecular-beam epitaxy of InSb/GaSb quantum dots,” J. Appl. Phys. 101(12), 124309 (2007).
[Crossref]

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815 (2001).
[Crossref]

J. Cryst. Growth (2)

S. V. Ivanov, A. N. Semenov, V. A. Solov’ev, O. G. Lyublinskaya, Y. V. Terent’ev, B. Y. Meltser, L. G. Prokopova, A. A. Sitnikova, A. A. Usikova, A. A. Toropov, and P. S. Kop’ev, “Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers,” J. Cryst. Growth 278(1), 72–77 (2005).
[Crossref]

S. Shusterman, Y. Paltiel, A. Sher, V. Ezersky, and Y. Rosenwaks, “High-density nanometer-scale InSb dots formation using droplets heteroepitaxial growth by MOVPE,” J. Cryst. Growth 291(2), 363–369 (2006).
[Crossref]

J. Phys. D Appl. Phys. (1)

Q. Zhuang, P. J. Carrington, and A. Krier, “Growth optimization of self-organized InSb/InAs quantum dots,” J. Phys. D Appl. Phys. 41(23), 232003 (2008).
[Crossref]

J. Vac. Sci. Technol. B (2)

J. R. Waterman, B. V. Shanabrook, and R. J. Wagner, “Reflection high-energy electron diffraction study of Sb incorporation during molecular-beam epitaxy growth of GaSb and AlSb,” J. Vac. Sci. Technol. B 10(2), 895–897 (1992).
[Crossref]

K. R. Evans, C. E. Stutz, P. W. Yu, and C. R. Wie, “Massspectrometric determination of antimony incorporation during III–V molecular beam epitaxy,” J. Vac. Sci. Technol. B 8(2), 271–275 (1990).
[Crossref]

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. (1)

C. L. Canedy, C. S. Kim, M. Kim, D. C. Larrabee, J. a. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer, “High-power, narrow-ridge, mid-infrared interband cascade lasers,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 1160 (2008).

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

New J. Phys. (1)

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11(12), 125015 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. B Condens. Matter (1)

S.-H. Wei and A. Zunger, “InAsSb/InAs: A type-I or a type-II band alignment,” Phys. Rev. B Condens. Matter 52(16), 12039–12044 (1995).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Karim, O. Gustafsson, L. Hussain, Q. Wang, B. Noharet, M. Hammar, J. Anderson, and J. Song, “Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE,” Proc. SPIE 8439, 84391J (2012).
[Crossref]

Quantum Electron. (1)

R. Q. Yang, J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman, “Mid-infrared type-II interband cascade lasers,” Quantum Electron. 38(6), 559–568 (2002).
[Crossref]

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Tech. Phys. Lett. (1)

K. D. Moiseev, Y. A. Parkhomenko, A. V. Ankudinov, E. V. Gushchina, M. P. Mikhaĭlova, A. N. Titkov, and Y. P. Yakovlev, “InSb/InAs quantum dots grown by liquid phase epitaxy,” Tech. Phys. Lett. 33(4), 295–298 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) InAs (orange), GaSb (red) and InSb (blue) band gaps and unstrained band alignment, as well as the bandgaps, lattice constants, and band alignments for InAsSb and InGaSb (dashed lines). Schematics of band structure and interband optical transitions for (b) InSb on InAs, (c) InSb on InAsSb and (d) InxGa1-xSb (for x = 0.4, 0.6, and 0.8) on InAs.

Fig. 2
Fig. 2

Normalized 77K photoluminescence spectra (23mW pump power) from (a) InSb layers of increasing thickness grown on InAs and (b)) InSb layers of increasing thickness grown on InAsSb. Inflection at ~4.2µm observed in (a)’s 1.25 and 1.5 MLs InSb samples is a result of atmospheric absorption.

Fig. 3
Fig. 3

(a) Photoluminescence spectra (23mW pump power) from sample shown schematically in (b) with 1.75ML InxGa1-xSb layers with increasing Ga alloy concentration. The four PL spectra shown in (a) correspond to, from top to bottom, samples with zero, one, two, and finally, all three InGaSb insertions etched off.

Fig. 4
Fig. 4

Temperature-dependent PL spectra (23mW pump power) for (a) 1.0 ML InSb/InAs (b) 1.75ML InSb/InAs (c) 1.75 ML InSb/InAsSb and (d) 1.75ML InGaSb/InAs samples, with insets showing the bandstructure for each of the samples investigated. Each spectra was normalized to the amplitude of the In(Ga)Sb insertion PL peak at 77K, allowing for visualization of not only the temperature dependent spectral changes, but also the relative change in PL intensity. (e) Integrated PL intensity for In(Ga)Sb insertion layers as a function of temperature.

Fig. 5
Fig. 5

Power-dependent normalized PL emission from (a) 1.0ML InSb/InAs and (b) 1.75 ML InSb/InAs sample at 77K. Laser powers used vary from 2.5 to 23mW, with a laser spot of approximately 350µm diameter incident upon the sample at 45°.

Fig. 6
Fig. 6

Atomic force micrographs of In(Ga)Sb layers deposited on InAs(Sb) surfaces. (a) 1.75ML InSb on InAs, (b) 1.75ML InSb on InAs0.97Sb0.03, and (c) 1.75ML In0.4Ga0.6Sb on InAs. No evidence for QD formation was observed on either of the InSb samples, while clear nano-scale features were observed for the InGaSb layer grown on InAs.

Fig. 7
Fig. 7

DF-TEM images and schematics of three layer samples with (a) 0.5, 1.0, and 1.5 ML of InSb grown on InAs and (b) three 1.5 ML InSb insertions grown on InAs0.97Sb0.03. (c) PL spectra for successive etching of the three-layer sample in (a), allowing us to assign spectral features in the PL to specific layers in to the sample. Inserted schematics show the emitting layers of the etched structure. (d) Wide-view DF-TEM image of sample in (b) showing significant defect formation in GaSb layer and minimal defects at InSb insertion portion of the sample. The inset shows the diffraction pattern with the (002) reflection excited which is used for DF-TEM imaging.

Fig. 8
Fig. 8

DF-TEM images and image intensity profiles for (a) 1.5ML InSb on InAs and (b) 1.5ML InSb on InAsSb. The intensity profiles for the DF-TEM images show the difference in layer uniformity for the two material systems investigated. The InSb insertion in InAs shows a broader intensity profile, indicative of thickness variations across the sampled area (white box) while the InSb layer grown on InAsSb shows a uniform and smooth QW formation.

Metrics