Abstract

We present the realization of a compact, monolithically integrated arrangement of terahertz quantum cascade lasers with hollow metallic cylindrical waveguides. By directly mounting a copper pipe to the end facet of a double metal waveguide, it was possible to significantly improve the far field emission from such a sub-wavelength plasmonic mode, while preserving the characteristic performance of the laser. Careful alignment of the quantum cascade laser and the hollow waveguide is required in order to prevent the excitation of higher order/mixed modes as predicted with a high degree of accuracy by a theoretical model. Finally, this approach proved to be a superior method of beam shaping when compared to other in situ arrangements, such as a silicon hyper-hemispherical lens glued to the facet, which are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides

R. Wallis, R. Degl’Innocenti, D. S. Jessop, Y. Ren, A. Klimont, Y. D. Shah, O. Mitrofanov, C. M. Bledt, J. E. Melzer, J. A. Harrington, H. E. Beere, and D. A. Ritchie
Opt. Express 23(20) 26276-26287 (2015)

High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides

Miriam S. Vitiello, Ji-Hua Xu, Mirgender Kumar, Fabio Beltram, Alessandro Tredicucci, Oleg Mitrofanov, Harvey E. Beere, and David A. Ritchie
Opt. Express 19(2) 1122-1130 (2011)

Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures

F. Wang, I. Kundu, L. Chen, L. Li, E. H. Linfield, A. G. Davies, S. Moumdji, R. Colombelli, J. Mangeney, J. Tignon, and S. S. Dhillon
Opt. Express 24(3) 2174-2182 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1(2), 97–105 (2007).
    [Crossref]
  2. B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
    [Crossref]
  3. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photon. 3(10), 586–590 (2009).
    [Crossref]
  4. M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
    [Crossref]
  5. G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
    [Crossref]
  6. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
    [Crossref]
  7. W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
    [Crossref]
  8. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. Reno, “High power and high temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
    [Crossref]
  9. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7) 910–912 (2010).
    [Crossref] [PubMed]
  10. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. R. Neal, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46(22), 5051–5055 (2007).
    [Crossref] [PubMed]
  11. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [Crossref] [PubMed]
  12. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express, 18(3), 1898–1903 (2010).
    [Crossref]
  13. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
    [Crossref]
  14. M. S. Vitiello, J-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19(2), 1122–1130 (2011).
    [Crossref] [PubMed]
  15. M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
    [Crossref]
  16. S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
    [Crossref]
  17. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Real-time imaging using a 4.3-THz Quantum Cascade Laser and a 320×240 Microbolometer Focal-Plane Array,” IEEE Photon. Technol. Lett. 18(3), 1415–1417 (2006).
    [Crossref]
  18. U. Siciliani de Cumis, J.-H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M. S. Vitiello, P. A. Benedetti, H. E. Beere, and D. A. Ritchie, “Terahertz confocal microscopy with a quantum cascade laser source,” Opt. Express 20(20), 21924–21931 (2012).
    [Crossref]
  19. R. Degl’Innocenti, M. Montinaro, J.-H. Xu, V. Piazza, P. Pingue, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Differential Near-Field Scanning Optical Microscopy with THz quantum cascade laser sources,” Opt. Express 17(26), 23785–23792 (2009).
    [Crossref]

2013 (1)

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

2012 (2)

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

U. Siciliani de Cumis, J.-H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M. S. Vitiello, P. A. Benedetti, H. E. Beere, and D. A. Ritchie, “Terahertz confocal microscopy with a quantum cascade laser source,” Opt. Express 20(20), 21924–21931 (2012).
[Crossref]

2011 (2)

M. S. Vitiello, J-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19(2), 1122–1130 (2011).
[Crossref] [PubMed]

M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
[Crossref]

2010 (3)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express, 18(3), 1898–1903 (2010).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7) 910–912 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

2007 (3)

2006 (1)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Real-time imaging using a 4.3-THz Quantum Cascade Laser and a 320×240 Microbolometer Focal-Plane Array,” IEEE Photon. Technol. Lett. 18(3), 1415–1417 (2006).
[Crossref]

2004 (2)

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref] [PubMed]

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

2003 (1)

B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Akalin, T.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Alton, J

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Amanti, M. I.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photon. 3(10), 586–590 (2009).
[Crossref]

Andronico, A.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Barbieri, S.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Beck, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photon. 3(10), 586–590 (2009).
[Crossref]

Beere, H. E.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

U. Siciliani de Cumis, J.-H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M. S. Vitiello, P. A. Benedetti, H. E. Beere, and D. A. Ritchie, “Terahertz confocal microscopy with a quantum cascade laser source,” Opt. Express 20(20), 21924–21931 (2012).
[Crossref]

M. S. Vitiello, J-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19(2), 1122–1130 (2011).
[Crossref] [PubMed]

M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
[Crossref]

R. Degl’Innocenti, M. Montinaro, J.-H. Xu, V. Piazza, P. Pingue, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Differential Near-Field Scanning Optical Microscopy with THz quantum cascade laser sources,” Opt. Express 17(26), 23785–23792 (2009).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Belarouci, A.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

Beltram, F.

Benedetti, P. A.

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Colombelli, R.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

Cui, M.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

Danylov, A. A.

Davies, A. G.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Degl’Innocenti, R.

Faist, J.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photon. 3(10), 586–590 (2009).
[Crossref]

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Filloux, P.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Fischer, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photon. 3(10), 586–590 (2009).
[Crossref]

Fowler, J.

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Gao, J. R.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

Gatesman, A. J.

Gellie, P.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

George, R.

Giles, R. H.

Goyette, T. M.

Harrington, J. A.

M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
[Crossref]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express, 18(3), 1898–1903 (2010).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[Crossref] [PubMed]

Hovenier, J. N.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

Hu, Q.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7) 910–912 (2010).
[Crossref] [PubMed]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. Reno, “High power and high temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Real-time imaging using a 4.3-THz Quantum Cascade Laser and a 320×240 Microbolometer Focal-Plane Array,” IEEE Photon. Technol. Lett. 18(3), 1415–1417 (2006).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Kao, T. Y.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Khanna, S. P.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Kumar, M.

Kumar, S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7) 910–912 (2010).
[Crossref] [PubMed]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. Reno, “High power and high temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Real-time imaging using a 4.3-THz Quantum Cascade Laser and a 320×240 Microbolometer Focal-Plane Array,” IEEE Photon. Technol. Lett. 18(3), 1415–1417 (2006).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Lampin, J.-F.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Lee, A. W. M.

Leo, G.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Letartre, X.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

Li, L.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Linden, K. J.

Linfield, E. H.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Maineult, W.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Masini, L.

Mitrofanov, O.

M. S. Vitiello, J-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19(2), 1122–1130 (2011).
[Crossref] [PubMed]

M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
[Crossref]

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express, 18(3), 1898–1903 (2010).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

Montinaro, M.

Mueller, E.

Neal, W. R.

Nixon, W. E.

Pedersen, P.

Peytavit, E.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Piazza, V.

Pingue, P.

Qin, Q.

Ren, Y.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

Reno, J.

Reno, J. L.

Ritchie, D. A.

U. Siciliani de Cumis, J.-H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M. S. Vitiello, P. A. Benedetti, H. E. Beere, and D. A. Ritchie, “Terahertz confocal microscopy with a quantum cascade laser source,” Opt. Express 20(20), 21924–21931 (2012).
[Crossref]

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
[Crossref]

M. S. Vitiello, J-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19(2), 1122–1130 (2011).
[Crossref] [PubMed]

R. Degl’Innocenti, M. Montinaro, J.-H. Xu, V. Piazza, P. Pingue, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Differential Near-Field Scanning Optical Microscopy with THz quantum cascade laser sources,” Opt. Express 17(26), 23785–23792 (2009).
[Crossref]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

Scalari, G.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photon. 3(10), 586–590 (2009).
[Crossref]

Siciliani de Cumis, U.

Sirtori, C.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

Vercruyssen, N.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

Vitiello, M. S.

Waldman, J.

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Wanke, M. C.

Williams, B. S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7) 910–912 (2010).
[Crossref] [PubMed]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. Reno, “High power and high temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32(19), 2840–2842 (2007).
[Crossref]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Real-time imaging using a 4.3-THz Quantum Cascade Laser and a 320×240 Microbolometer Focal-Plane Array,” IEEE Photon. Technol. Lett. 18(3), 1415–1417 (2006).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

Xu, G.

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

Xu, J.-H.

Xu, J-H.

M. S. Vitiello, J-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of Terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19(2), 1122–1130 (2011).
[Crossref] [PubMed]

M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
[Crossref]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse electromagnetic-horn antenna,” Appl. Phys. Lett. 93(18), 183508 (2008).
[Crossref]

B. S. Williams, S. Kumar, H. Callebaut, and Q. Hu, “Terahertz quantum-cascade laser at 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124–2126 (2003).
[Crossref]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102(11), 111113 (2013).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93(18), 181104 (2008).
[Crossref]

S. Barbieri, J Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. Reno, “Real-time imaging using a 4.3-THz Quantum Cascade Laser and a 320×240 Microbolometer Focal-Plane Array,” IEEE Photon. Technol. Lett. 18(3), 1415–1417 (2006).
[Crossref]

J. Appl. Phys. (1)

M. S. Vitiello, J-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110(6), 063112 (2011).
[Crossref]

Nature Commun. (1)

G. Xu, R. Colombelli, S. P. Khanna, A. Belarouci, X. Letartre, L. Li, E. H. Linfield, A. G. Davies, H. E. Beere, and D. A. Ritchie, “Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures,” Nature Commun. 3, 952 (2012).
[Crossref]

Nature Mater. (1)

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nature Mater. 9(9), 730–735 (2010).
[Crossref]

Nature Photon. (2)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nature Photon. 3(10), 586–590 (2009).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1(2), 97–105 (2007).
[Crossref]

Opt. Express (4)

Opt. Express, (1)

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express, 18(3), 1898–1903 (2010).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the DM QCL coupled to a hollow metallic waveguide with a length L of 11 mm and a inner diameter d of 1.7 mm. The relative positioning between the QCL and the waveguide is critical: alignment of the QCL with the waveguide axis (a) results in efficient excitation of the dominant mode, whereas misalignment (b) can lead to the excitation of the higher order modes.

Fig. 2
Fig. 2

a) Voltage-current and light-current curves of a 2.9 mm, 120 μm wide ridge QCL in the three different configuration, without the waveguide and in the arrangements of Figs. 1(a) and 1(b). The laser was biased in pulsed operation at 100 kHz and with 10% duty cycle at 4 K temperature. b) A comparison between the threshold current density JTH of the same QCL, with and without the copper waveguide attached in the configuration of Fig. 1(a). The solid lines represent the best fit to the experimental data

Fig. 3
Fig. 3

Measured and theoretically predicted pattern emissions out of a 11 mm long hollow pipe at a distance z of 22 mm between the detector (Golay cell) and the waveguide aperture. All the simulations have been performed at a frequency of 2.8 THz, which is the center frequency of the QCL emission. a) The output emission from the hollow wg in the alignement configuration illustrated in Fig. 1(a); b) The beam shape in the extreme case of the out of axis alignment reported in Fig. 1(b); c) The beam profile from the QCL without the waveguide, measured at a distance z of 11 mm

Fig. 4
Fig. 4

Beam profiles of a QCL with a Si hyper-hemispherical lens attached to a facet (arrangement depicted in the schematic on top), corresponding to different distance z between detector and laser a) z1 = 11 mm, b) z2 = 22 mm, c) z3 = 33 mm. Several profiles have been extracted for analysis and fitting along a direction similar to the one presented in b)

Fig. 5
Fig. 5

Profile extracted from the beam pattern QCL + Si lens acquired at a distance of 33 mm as presented in Fig. 4(c), together with the best fit obtained by using Eq. 1. Similar fits from the other profiles are shown in the inset for both Silicon lens and Hollow waveguide coupled QCLs.

Fig. 6
Fig. 6

Near field (z=0) pattern calculated in the configuration of Fig. 3(b). The three lobes pattern is a superposition between 2×TE01 and one TM31 modes. The far field at different distances z is given by the relative intensity/phases of the two modes

Tables (1)

Tables Icon

Table 1 Calculated values for the initial waist w0 for the profiles extracted from the beam patterns acquired at different z values. The error is given by the reproducibility of several profiles extracted from the same far-field figure. The same procedure was applied for both cases of the QCL coupled to a Silicon lens and for the QCL coupled to an 8 mm long copper waveguide

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( A , r , r 0 , w 0 , λ 0 ) = A exp 2 ( r r 0 ) 2 w ( z ) 2
where w ( z ) = w 0 1 + ( z / z 0 ) 2 and z 0 = π w 0 2 / λ 0

Metrics