Abstract

A technology of laser-induced coloration of metals by surface oxidation is demonstrated. Each color of the oxide film corresponds to a technologic chromacity coefficient, which takes into account the temperature of the sample after exposure by sequence of laser pulses with nanosecond duration and effective time of action. The coefficient can be used for the calculation of laser exposure regimes for the development of a specific color on the metal. A correlation between the composition of the films obtained on the surface of stainless steel AISI 304 and commercial titanium Grade 2 and its color and chromacity coordinates is shown.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controlled nanostructrures formation by ultra fast laser pulses for color marking

B. Dusser, Z. Sagan, H. Soder, N. Faure, J.P. Colombier, M. Jourlin, and E. Audouard
Opt. Express 18(3) 2913-2924 (2010)

Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification

E. I. Ageev, V. P. Veiko, E. A. Vlasova, Y. Y. Karlagina, A. Krivonosov, M. K. Moskvin, G. V. Odintsova, V. E. Pshenichnov, V. V. Romanov, and R. M. Yatsuk
Opt. Express 26(2) 2117-2122 (2018)

Thermal effects of laser marking on microstructure and corrosion properties of stainless steel

M. Švantner, M. Kučera, E. Smazalová, Š. Houdková, and R. Čerstvý
Appl. Opt. 55(34) D35-D45 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Sugioka, M. Meunier, and A. Pique, Laser Precision Microfabrication (Springer, 2010).
  2. A. Y. Vorobyev and Ch. Guo, “Direct femtosecond laser surface nano/ microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
    [Crossref]
  3. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [Crossref] [PubMed]
  4. H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
    [Crossref] [PubMed]
  5. A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
    [Crossref]
  6. A. Lehmuskero, V. Kontturi, J. Hiltunen, and M. Kuittinen, “Modeling of laser- colored stainless steel surfaces by color pixels,” Appl. Phys. B 98(2–3), 497–500 (2009).
  7. A. P. del Pino, P. Serra, and J. L. Morenza, “Oxidation of titanium through Nd:YAG laser irradiation,” Appl. Surf. Sci. 197–198, 887–890 (2002).
  8. E. A. Shakno, Analytical methods of research and development of laser micro- & nanotechnologies (NRU ITMO, 2008) (in Russian).
  9. R. Lukas and K. N. Plataniotis, Color image processing. Methods and applications (CRC Press, 2006).
  10. V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Availability of methods of chemical thermodynamics and kinetics for the analysis of chemical transformations on metal surfaces under pulsed laser action,” Laser Phys. 23(6), 066001 (2013).
    [Crossref]
  11. A. A. Slobodov, “Modeling of laser thermochemical action on metals by chemical thermodynamics and kinetics methods,” in Proceedings of Fundamentals of Laser Assisted Micro– and Nanotechnologies, V.P. Veiko, ed. (NRU ITMO, 2013), pp. 62.
  12. V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Application of chemical thermodynamics to analysis of laser thermochemical action on metals,” Priborostr. 57(6), 58–65 (2014) (in Russian).
  13. M. N. Libenson, Laser-Induced Optical and Thermal Processes in the Condensed Mediums and its Application (Moscow: Nauka, 2007) (in Russian).
  14. P. Psyllaki and R. Oltra, “Preliminary study on the laser cleaning of stainless steels after high temperature oxidation,” Mater. Sci. Eng. A 282(1–2), 145–152 (2000).
    [Crossref]
  15. A. L. Skuratova, G. V. Odintsova, Yu.Yu. Karlagina, V. P. Veiko, A. V. Loginov and S. G. Gorny “Software for color laser marking “Color Layer Splitter” (certificate of registration Nº 2014614446, 2014).

2014 (1)

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Application of chemical thermodynamics to analysis of laser thermochemical action on metals,” Priborostr. 57(6), 58–65 (2014) (in Russian).

2013 (3)

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Availability of methods of chemical thermodynamics and kinetics for the analysis of chemical transformations on metal surfaces under pulsed laser action,” Laser Phys. 23(6), 066001 (2013).
[Crossref]

A. Y. Vorobyev and Ch. Guo, “Direct femtosecond laser surface nano/ microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
[Crossref]

2010 (1)

2009 (2)

H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express 17(14), 12189–12196 (2009).
[Crossref] [PubMed]

A. Lehmuskero, V. Kontturi, J. Hiltunen, and M. Kuittinen, “Modeling of laser- colored stainless steel surfaces by color pixels,” Appl. Phys. B 98(2–3), 497–500 (2009).

2002 (1)

A. P. del Pino, P. Serra, and J. L. Morenza, “Oxidation of titanium through Nd:YAG laser irradiation,” Appl. Surf. Sci. 197–198, 887–890 (2002).

2000 (1)

P. Psyllaki and R. Oltra, “Preliminary study on the laser cleaning of stainless steels after high temperature oxidation,” Mater. Sci. Eng. A 282(1–2), 145–152 (2000).
[Crossref]

Abramski, K. M.

A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
[Crossref]

Antonczak, A. J.

A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
[Crossref]

Audouard, E.

Colombier, J. P.

del Pino, A. P.

A. P. del Pino, P. Serra, and J. L. Morenza, “Oxidation of titanium through Nd:YAG laser irradiation,” Appl. Surf. Sci. 197–198, 887–890 (2002).

Dusser, B.

Faure, N.

Guo, Ch.

A. Y. Vorobyev and Ch. Guo, “Direct femtosecond laser surface nano/ microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

Hiltunen, J.

A. Lehmuskero, V. Kontturi, J. Hiltunen, and M. Kuittinen, “Modeling of laser- colored stainless steel surfaces by color pixels,” Appl. Phys. B 98(2–3), 497–500 (2009).

Jourlin, M.

Kocon, D.

A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
[Crossref]

Kontturi, V.

A. Lehmuskero, V. Kontturi, J. Hiltunen, and M. Kuittinen, “Modeling of laser- colored stainless steel surfaces by color pixels,” Appl. Phys. B 98(2–3), 497–500 (2009).

Koziol, P.

A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
[Crossref]

Kuittinen, M.

A. Lehmuskero, V. Kontturi, J. Hiltunen, and M. Kuittinen, “Modeling of laser- colored stainless steel surfaces by color pixels,” Appl. Phys. B 98(2–3), 497–500 (2009).

Lehmuskero, A.

A. Lehmuskero, V. Kontturi, J. Hiltunen, and M. Kuittinen, “Modeling of laser- colored stainless steel surfaces by color pixels,” Appl. Phys. B 98(2–3), 497–500 (2009).

Lochbihler, H.

Morenza, J. L.

A. P. del Pino, P. Serra, and J. L. Morenza, “Oxidation of titanium through Nd:YAG laser irradiation,” Appl. Surf. Sci. 197–198, 887–890 (2002).

Nowak, M.

A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
[Crossref]

Odintsova, G. V.

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Application of chemical thermodynamics to analysis of laser thermochemical action on metals,” Priborostr. 57(6), 58–65 (2014) (in Russian).

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Availability of methods of chemical thermodynamics and kinetics for the analysis of chemical transformations on metal surfaces under pulsed laser action,” Laser Phys. 23(6), 066001 (2013).
[Crossref]

Oltra, R.

P. Psyllaki and R. Oltra, “Preliminary study on the laser cleaning of stainless steels after high temperature oxidation,” Mater. Sci. Eng. A 282(1–2), 145–152 (2000).
[Crossref]

Psyllaki, P.

P. Psyllaki and R. Oltra, “Preliminary study on the laser cleaning of stainless steels after high temperature oxidation,” Mater. Sci. Eng. A 282(1–2), 145–152 (2000).
[Crossref]

Sagan, Z.

Serra, P.

A. P. del Pino, P. Serra, and J. L. Morenza, “Oxidation of titanium through Nd:YAG laser irradiation,” Appl. Surf. Sci. 197–198, 887–890 (2002).

Slobodov, A. A.

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Application of chemical thermodynamics to analysis of laser thermochemical action on metals,” Priborostr. 57(6), 58–65 (2014) (in Russian).

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Availability of methods of chemical thermodynamics and kinetics for the analysis of chemical transformations on metal surfaces under pulsed laser action,” Laser Phys. 23(6), 066001 (2013).
[Crossref]

Soder, H.

Veiko, V. P.

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Application of chemical thermodynamics to analysis of laser thermochemical action on metals,” Priborostr. 57(6), 58–65 (2014) (in Russian).

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Availability of methods of chemical thermodynamics and kinetics for the analysis of chemical transformations on metal surfaces under pulsed laser action,” Laser Phys. 23(6), 066001 (2013).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and Ch. Guo, “Direct femtosecond laser surface nano/ microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

Appl. Phys. B (1)

A. Lehmuskero, V. Kontturi, J. Hiltunen, and M. Kuittinen, “Modeling of laser- colored stainless steel surfaces by color pixels,” Appl. Phys. B 98(2–3), 497–500 (2009).

Appl. Surf. Sci. (2)

A. P. del Pino, P. Serra, and J. L. Morenza, “Oxidation of titanium through Nd:YAG laser irradiation,” Appl. Surf. Sci. 197–198, 887–890 (2002).

A. J. Antończak, D. Kocon, M. Nowak, P. Kozioł, and K. M. Abramski, “Laser-induced colour marking—Sensitivity scaling for a stainless steel,” Appl. Surf. Sci. 264, 229–236 (2013).
[Crossref]

Laser Photon. Rev. (1)

A. Y. Vorobyev and Ch. Guo, “Direct femtosecond laser surface nano/ microstructuring and its applications,” Laser Photon. Rev. 7(3), 385–407 (2013).
[Crossref]

Laser Phys. (1)

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Availability of methods of chemical thermodynamics and kinetics for the analysis of chemical transformations on metal surfaces under pulsed laser action,” Laser Phys. 23(6), 066001 (2013).
[Crossref]

Mater. Sci. Eng. A (1)

P. Psyllaki and R. Oltra, “Preliminary study on the laser cleaning of stainless steels after high temperature oxidation,” Mater. Sci. Eng. A 282(1–2), 145–152 (2000).
[Crossref]

Opt. Express (2)

Priborostr. (1)

V. P. Veiko, A. A. Slobodov, and G. V. Odintsova, “Application of chemical thermodynamics to analysis of laser thermochemical action on metals,” Priborostr. 57(6), 58–65 (2014) (in Russian).

Other (6)

M. N. Libenson, Laser-Induced Optical and Thermal Processes in the Condensed Mediums and its Application (Moscow: Nauka, 2007) (in Russian).

A. A. Slobodov, “Modeling of laser thermochemical action on metals by chemical thermodynamics and kinetics methods,” in Proceedings of Fundamentals of Laser Assisted Micro– and Nanotechnologies, V.P. Veiko, ed. (NRU ITMO, 2013), pp. 62.

A. L. Skuratova, G. V. Odintsova, Yu.Yu. Karlagina, V. P. Veiko, A. V. Loginov and S. G. Gorny “Software for color laser marking “Color Layer Splitter” (certificate of registration Nº 2014614446, 2014).

K. Sugioka, M. Meunier, and A. Pique, Laser Precision Microfabrication (Springer, 2010).

E. A. Shakno, Analytical methods of research and development of laser micro- & nanotechnologies (NRU ITMO, 2008) (in Russian).

R. Lukas and K. N. Plataniotis, Color image processing. Methods and applications (CRC Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Experimental setup on the base of ytterbium pulse fiber laser. b) Line-by-line strategy of the laser beam scanning on the metal surface and layout view of overlapping along the X- (Lx) and Y-axis (Ly). Dashed line – laser generation is absent.
Fig. 2
Fig. 2 Сtech ranges and ΔEab for stainless steel (а) and commercial titanium (b).
Fig. 3
Fig. 3 Reflectance spectra and samples of AISI 304 steel (St, (a)) and titanium Grade2 (Ti, (b)) before (St1, Ti1) and after laser treatment. For the main colors CIE 1931 chromaticity coordinates and corresponding Сtech values are: St2 - Ctech = 2.82 °C ×ms (X = 100.00, Y = 100.00, Z = 99.99, x = 0.33, y = 0.33), St3 - 6.83 °C × ms (81.62, 81.27,70.46, 0.35, 0.35), St4 - 14.72 °C × ms (29.72, 29.43, 36.08, 0.31, 0.31), St5 - 53.25 °C × ms (22.62, 19.89, 16.01, 0.39, 0.34), St6 - 78.62 °C × ms (7.74, 8.27, 6.53, 0.34, 0.37); Ti2 - 23.89 °C × ms (25.82, 25.32, 20.11, 0.36, 0.36), Ti3 - 43.64 °C × ms (20.65, 18.93, 6.60, 0.45, 0.41), Ti4 - 72.78 °C × ms (8.40, 6.02, 0.60, 0.56, 0.40), Ti5 - 102.32 °C × ms (3.63, 2.68, 4.27, 0.34, 0.25), Ti6 - 198.63 °C × ms (17.00, 17.01, 18.60, 0.32, 0.32).
Fig. 4
Fig. 4 Images obtained on stainless steel (a - QR-code generated by Microsoft Tag software, b - surface of penknife blade with the logo where there are microscopic-sized identification mark “ITMO”) and titanium (c) by the CLM technology.

Tables (1)

Tables Icon

Table 1 Composition and structure of the films obtained on the surface of steel and titanium after pulsed laser exposure

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T( N x )= 2I(1R) a k π n=0 N x [ t( N x ) n f t( N x )( n f +τ) ] + T 0 ,
t eff_x,y = N x N y τ=(1 L x )(1 L y )τ,
C tech =T( N x ) t eff_x,y .

Metrics