Abstract

We demonstrate experimentally an all-optical switching operation using the Kerr effect in a silica toroid microcavity. Thanks to the small mode volume and high quality factor of the silica toroid microcavity, we achieved on-chip optical Kerr switching with an input power of 2 mW. This value is the smallest among all previously reported on-chip optical Kerr switches. We also show that this value can be reduced to a few tens of μW by employing a mode with a Q factor of > 2 × 107.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of bistable memory in silica toroid microcavity

Wataru Yoshiki and Takasumi Tanabe
J. Opt. Soc. Am. B 29(12) 3335-3343 (2012)

Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited]

Jiyang Ma, Xiaoshun Jiang, and Min Xiao
Photon. Res. 5(6) B54-B58 (2017)

All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect

Michael Pöllinger and Arno Rauschenbeutel
Opt. Express 18(17) 17764-17775 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [Crossref]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
    [Crossref] [PubMed]
  3. C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
    [Crossref]
  4. V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
    [Crossref]
  5. M. Waldow, T. Ploetzing, M. Gottheil, M. Foerst, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16, 7693–7702 (2008).
    [Crossref] [PubMed]
  6. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
    [Crossref]
  7. J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22, 3797–3810 (2014).
    [Crossref] [PubMed]
  8. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. D. Rossi, “Kerr-induced all-optical switching in a GaInP photonic crystal Fabry-Perot resonator,” Opt. Express 20, 8524–8534 (2012).
    [Crossref] [PubMed]
  9. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
    [Crossref] [PubMed]
  10. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
    [Crossref] [PubMed]
  11. I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express 19, 9523–9528 (2011).
    [Crossref] [PubMed]
  12. N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
    [Crossref] [PubMed]
  13. S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref] [PubMed]
  14. J. Knight, G. Cheung, F. Jacques, and T. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  15. D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111, 193601 (2013).
    [Crossref]
  16. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  17. C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
    [Crossref]
  18. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  19. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref] [PubMed]
  20. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]
  21. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013).
    [Crossref] [PubMed]
  22. H. Rokhsari and K. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
    [Crossref] [PubMed]
  23. W. Yoshiki and T. Tanabe, “Analysis of bistable memory in silica toroid microcavity,” J. Opt. Soc. Am. B 29, 3335–3343 (2012).
    [Crossref]
  24. M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref] [PubMed]
  25. H. Rokhsari, S. Spillane, and K. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
    [Crossref]
  26. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
    [Crossref]
  27. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning,” Phys. Rev. Lett. 102, 043907 (2009).
    [Crossref] [PubMed]
  28. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
    [Crossref]
  29. Q. V. Tran, S. Combrie, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
    [Crossref]
  30. T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [Crossref] [PubMed]
  31. G. Agrawal, Nonlinear Fibre Optics (Academic, 1995).

2014 (2)

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22, 3797–3810 (2014).
[Crossref] [PubMed]

2013 (3)

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express 19, 9523–9528 (2011).
[Crossref] [PubMed]

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

2010 (2)

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
[Crossref] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

2009 (3)

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[Crossref] [PubMed]

Q. V. Tran, S. Combrie, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

2008 (1)

2007 (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
[Crossref]

2006 (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

2005 (4)

2004 (3)

H. Rokhsari, S. Spillane, and K. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref] [PubMed]

V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

2003 (2)

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

1999 (1)

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

1997 (1)

1996 (1)

Agrawal, G.

G. Agrawal, Nonlinear Fibre Optics (Academic, 1995).

Almeida, V.

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Armani, A. M.

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Badding, J. V.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Barclay, P.

Barrios, C.

Beausoleil, R. G.

Berneschi, S.

Birks, T.

Bolten, J.

Borselli, M.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Cestier, I.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Cheung, G.

Chipouline, A.

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

Colman, P.

Q. V. Tran, S. Combrie, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

Combrie, S.

Q. V. Tran, S. Combrie, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Combrié, S.

Conti, G. N.

Day, T. D.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

De Rossi, A.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Q. V. Tran, S. Combrie, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

Eckhouse, V.

Eisenstein, G.

Fan, S.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Fattal, D. A.

Foerst, M.

Foster, M.

Gaeta, A.

Gorodetsky, M.

Gottheil, M.

Haus, H.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Healy, N.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Husko, C.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Ilchenko, V.

Jacques, F.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Joannopoulos, J.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Johnson, T.

Junge, C.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Kaesebier, T.

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

Khan, M.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T.

T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kley, E. B.

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

Knight, J.

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
[Crossref] [PubMed]

Kurz, H.

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lehoucq, G.

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lipson, M.

Manolatou, C.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Matsuo, S.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Mehta, P.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Mitsugi, S.

Murzina, T. V.

Notomi, M.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
[Crossref] [PubMed]

Nozaki, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

O’Shea, D.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Ouzounov, D.

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref] [PubMed]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Panepucci, R.

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Peacock, A. C.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Pelc, J. S.

Pelli, S.

Pertsch, T.

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

Ploetzing, T.

Pöllinger, M.

Raineri, F.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Rauschenbeutel, A.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
[Crossref] [PubMed]

Razdolskiy, I.

Righini, G. C.

Rivoire, K.

Rokhsari, H.

H. Rokhsari and K. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
[Crossref] [PubMed]

H. Rokhsari, S. Spillane, and K. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

Rossi, A. D.

Santori, C.

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Savchenkov, A.

Schmidt, C.

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

Shinya, A.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
[Crossref] [PubMed]

Soria, S.

Spillane, S.

T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref] [PubMed]

H. Rokhsari, S. Spillane, and K. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Srinivasan, K.

Suhailin, F. H.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

Tanabe, T.

W. Yoshiki and T. Tanabe, “Analysis of bistable memory in silica toroid microcavity,” J. Opt. Soc. Am. B 29, 3335–3343 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[Crossref] [PubMed]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30, 2575–2577 (2005).
[Crossref] [PubMed]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[Crossref] [PubMed]

Tran, Q. V.

Q. V. Tran, S. Combrie, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Tuennermann, A.

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

Vahala, K.

H. Rokhsari and K. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
[Crossref] [PubMed]

T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref] [PubMed]

H. Rokhsari, S. Spillane, and K. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Villeneuve, P.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Vo, S.

Volz, J.

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Vukovic, N.

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Wahlbrink, T.

Waldow, M.

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Wong, C. W.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yoshiki, W.

Zhang, X.

Appl. Phys. B (1)

C. Schmidt, A. Chipouline, T. Kaesebier, E. B. Kley, A. Tuennermann, and T. Pertsch, “Temperature induced nonlinearity in coupled microresonators,” Appl. Phys. B 104, 503–511 (2011).
[Crossref]

Appl. Phys. Lett. (3)

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).
[Crossref]

H. Rokhsari, S. Spillane, and K. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004).
[Crossref]

Q. V. Tran, S. Combrie, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55, 1209–1218 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (3)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip,” Nat. Photonics 8, 474–481 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Nature (2)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Opt. Express (8)

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013).
[Crossref] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref] [PubMed]

M. Waldow, T. Ploetzing, M. Gottheil, M. Foerst, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16, 7693–7702 (2008).
[Crossref] [PubMed]

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22, 3797–3810 (2014).
[Crossref] [PubMed]

V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, G. Lehoucq, and A. D. Rossi, “Kerr-induced all-optical switching in a GaInP photonic crystal Fabry-Perot resonator,” Opt. Express 20, 8524–8534 (2012).
[Crossref] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005).
[Crossref] [PubMed]

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
[Crossref] [PubMed]

I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express 19, 9523–9528 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (4)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning,” Phys. Rev. Lett. 102, 043907 (2009).
[Crossref] [PubMed]

T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-Optical Switch Controlled by a Single Atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref] [PubMed]

Sci. Rep. (1)

N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep. 3, 2885 (2013).
[Crossref] [PubMed]

Other (1)

G. Agrawal, Nonlinear Fibre Optics (Academic, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for all- optical switching. TLD: Tunable laser diode, EDFA: Erbium doped fiber amplifier, VOA: Variable optical attenuator, BPF: Band pass filter, EOM: Electro-optical modulator, PC: Polarization controller, PD: Photo diode, and OSO: Optical sampling oscilloscope.
Fig. 2
Fig. 2 All-optical switching operation based on (a) TO and (b) Kerr effects. The solid blue line represents the signal output and the gray area indicates that the control light is inputted. The signal output is normalized by the off-resonance output. The red dotted line represents the signal output calculated by the simulation.
Fig. 3
Fig. 3 Signal output for control different pulse durations Tcont. The blue line represents signal output when the signal wavelength is detuned to the resonance.
Fig. 4
Fig. 4 (a) Switching contrast η versus input control power P in cont. The blue dots and black solid line are experimental data and a theoretical curve, respectively. The inset illustrates the definition of switching contrast. (b) The waveforms of signal outputs for different control powers ( P in cont = 2.1 mW, 830 μW).
Fig. 5
Fig. 5 Signal output with an ultra high-Q cavity. The signal output is amplified by an EDFA before being detected. The peak control power is P in cont = 36 μ W.

Tables (1)

Tables Icon

Table 1 Comparison of the performance of optical Kerr switches.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U cavity = ( 1 Tr res cont ) λ res cont Q load cont π c P in cont ,
Δ n Kerr ( r , z ) = 2 n 2 c n 0 u cavity ( r , z ) = n 2 c n 0 π R U cavity I ˜ ( r , z ) ,
δ λ cont = λ res cont n 0 Δ n Kerr ( r , z ) I ˜ ( r , z ) d r d z .
δ λ cont = ( λ res cont ) 2 n 2 Q load cont n 0 2 π 2 R ( 1 Tr res cont ) P in cont I ˜ 2 ( r , z ) d S .
δ λ sig = 2 δ λ cont .
Tr sig = Δ 2 + { π c λ res sig ( 1 Q int sig 1 Q coup sig ) } 2 Δ 2 + ( π c λ res sig Q load sig ) 2 = Δ 2 + ( π c λ res sig Q load sig ) 2 Tr res sig Δ 2 + ( π c λ res sig Q load sig ) 2 ,
Tr res sig = Tr sig = ( Δ = 0 ) { Q load sig ( 1 Q int sig 1 Q coup sig ) } 2 ,
Δ = 2 π c ( 1 λ res sig + δ λ sig 1 λ in sig ) ,
η = Δ 2 + ( π c λ res sig Q load sig ) 2 Tr res sig Δ 2 + ( π c λ res sig Q load sig ) 2 Tr res sig .

Metrics