Abstract

We present a detailed study on trapping and releasing of light in a graded graphene-silica metamaterial waveguide. By applying proper gate voltages onto the graphene layers, the metamaterial with graded-permittivity has the ability to trap the light due to the vanishing of normalized optical power flow between forward and backward modes. Based on the effective medium theory, the distributions of modes and the transmission characteristics of normalized power flows are investigated. Theoretical investigation shows that the waveguide has the ability to turn on or off the mid-infrared light from 5400 nm to 5800 nm. Moreover, adjusting the voltages on graphene layers can alter the bandwidth of trapped light. The graded metamaterial waveguide can be the candidate for multi-wavelength absorber based on the light trapping effect.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands

Anna Tyszka-Zawadzka, Bartosz Janaszek, and Paweł Szczepański
Opt. Express 25(7) 7263-7272 (2017)

Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang
Opt. Express 21(23) 28628-28637 (2013)

Trapping and releasing light by mechanical implementation in metamaterial waveguides

Yongyao Chen, Jianqiang Gu, X. C. Xie, and Weili Zhang
J. Opt. Soc. Am. A 28(2) 272-277 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, “Optical information processing in Bose–Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
    [Crossref]
  2. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
    [Crossref]
  3. M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
    [Crossref] [PubMed]
  4. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref] [PubMed]
  5. S. He, Y. He, and Y. Jin, “Revealing the truth about 'trapped rainbow' storage of light in metamaterials,” Scientific Reports 2, 583 (2012).
    [Crossref]
  6. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
    [Crossref] [PubMed]
  7. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref] [PubMed]
  8. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  10. L. Yang, T. Hu, A. Shen, C. Pei, B. Yang, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Ultracompact optical modulator based on graphene-silica metamaterial,” Opt. Lett. 39(7), 1909–1912 (2014).
    [Crossref] [PubMed]
  11. Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
    [PubMed]
  12. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref] [PubMed]
  13. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [Crossref] [PubMed]
  14. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  15. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  16. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
    [Crossref]
  17. A. Ourir, A. Maurel, and V. Pagneux, “Tunneling of electromagnetic energy in multiple connected leads using ε-near-zero materials,” Opt. Lett. 38(12), 2092–2094 (2013).
    [Crossref] [PubMed]
  18. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  19. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490 (2012).
    [Crossref]
  20. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
    [Crossref] [PubMed]
  21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  22. Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, “Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors,” Appl. Phys. Lett. 89(20), 203107 (2006).
    [Crossref]
  23. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  24. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  25. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [PubMed]
  26. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express 21(13), 15490–15504 (2013).
    [Crossref] [PubMed]
  27. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  28. C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
    [Crossref] [PubMed]
  29. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
    [Crossref] [PubMed]
  30. M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
    [Crossref] [PubMed]
  31. T. Jiang, Q. Zhang, and Y. Feng, “Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding,” Opt. Lett. 34(24), 3869–3871 (2009).
    [Crossref] [PubMed]
  32. L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
    [Crossref]
  33. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
    [Crossref] [PubMed]
  34. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express 16(21), 16903–16915 (2008).
    [Crossref] [PubMed]
  35. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [Crossref] [PubMed]
  36. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]

2014 (1)

2013 (5)

2012 (7)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[PubMed]

Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490 (2012).
[Crossref]

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

S. He, Y. He, and Y. Jin, “Revealing the truth about 'trapped rainbow' storage of light in metamaterials,” Scientific Reports 2, 583 (2012).
[Crossref]

2011 (6)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2008 (5)

L. V. Hau, “Optical information processing in Bose–Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
[Crossref]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express 16(21), 16903–16915 (2008).
[Crossref] [PubMed]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (3)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, “Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors,” Appl. Phys. Lett. 89(20), 203107 (2006).
[Crossref]

2004 (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

Alaee, R.

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Chang, K.

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

Chen, H.

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Chen, T.-C.

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R.

Dai, T.

Deng, J.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
[PubMed]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Dolling, G.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, S.

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Fang, Y.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
[PubMed]

Farhat, M.

Fedotov, V. A.

Feng, Y.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fodor, J. K.

Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, “Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors,” Appl. Phys. Lett. 89(20), 203107 (2006).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Gao, L.

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Gómez-Díaz, J. S.

Grant, J.

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, J.

Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, “Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors,” Appl. Phys. Lett. 89(20), 203107 (2006).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hau, L. V.

L. V. Hau, “Optical information processing in Bose–Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
[Crossref]

He, S.

S. He, Y. He, and Y. Jin, “Revealing the truth about 'trapped rainbow' storage of light in metamaterials,” Scientific Reports 2, 583 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

He, Y.

S. He, Y. He, and Y. Jin, “Revealing the truth about 'trapped rainbow' storage of light in metamaterials,” Scientific Reports 2, 583 (2012).
[Crossref]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Hou, B.

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[Crossref] [PubMed]

Hu, T.

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[Crossref] [PubMed]

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, T.

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

T. Jiang, Q. Zhang, and Y. Feng, “Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding,” Opt. Lett. 34(24), 3869–3871 (2009).
[Crossref] [PubMed]

Jiang, X.

Jin, Y.

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

S. He, Y. He, and Y. Jin, “Revealing the truth about 'trapped rainbow' storage of light in metamaterials,” Scientific Reports 2, 583 (2012).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Jung, J.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Khalid, A.

Kim, H.

Kim, K. Y.

Kim, S.

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kuo, P.

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

Lai, Y.

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Lederer, F.

Lee, B.

Lee, I. M.

Lee, I.-M.

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. Y.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Li, D.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Li, Y.

L. Yang, T. Hu, A. Shen, C. Pei, B. Yang, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Ultracompact optical modulator based on graphene-silica metamaterial,” Opt. Lett. 39(7), 1909–1912 (2014).
[Crossref] [PubMed]

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
[PubMed]

Lin, Z.

Linden, S.

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[Crossref] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Lu, Z.

Luo, J.

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Lv, X.

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y.

Maurel, A.

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Na, H.

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ourir, A.

Ouyang, Y.

Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, “Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors,” Appl. Phys. Lett. 89(20), 203107 (2006).
[Crossref]

Pagneux, V.

Park, J.

Pei, C.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

Plum, E.

Ran, L.

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

Ren, G.

Rockstuhl, C.

Saha, S.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shen, A.

Shou, C.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
[PubMed]

Si, L.-M.

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Su, L.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
[PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

Tsai, D. P.

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Wegener, M.

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xin, H.

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xu, C.

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, P.

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Yang, B.

Yang, J.

Yang, L.

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoon, Y.

Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, “Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors,” Appl. Phys. Lett. 89(20), 203107 (2006).
[Crossref]

Yu, C.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
[PubMed]

Yu, H.

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, J.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

T. Jiang, Q. Zhang, and Y. Feng, “Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding,” Opt. Lett. 34(24), 3869–3871 (2009).
[Crossref] [PubMed]

Zhang, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, W.

Zheludev, N. I.

Zheng, S.

Zhu, B.

Appl. Phys. Lett. (2)

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, “Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors,” Appl. Phys. Lett. 89(20), 203107 (2006).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (1)

L.-M. Si, T. Jiang, K. Chang, T.-C. Chen, X. Lv, L. Ran, and H. Xin, “Active Microwave Metamaterials Incorporating Ideal Gain Devices,” Materials 4(1), 73–83 (2011).
[Crossref]

Nano Lett. (2)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

L. V. Hau, “Optical information processing in Bose–Einstein condensates,” Nat. Photonics 2(8), 451–453 (2008).
[Crossref]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[Crossref]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. Lett. (3)

M. S. Jang and H. Atwater, “Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[Crossref] [PubMed]

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[Crossref] [PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” Trapping and Releasing at Telecommunication Wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Sci Rep (2)

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci Rep 3, 2865 (2013).
[PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[Crossref] [PubMed]

Science (6)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Scientific Reports (1)

S. He, Y. He, and Y. Jin, “Revealing the truth about 'trapped rainbow' storage of light in metamaterials,” Scientific Reports 2, 583 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Illustration of waveguide structure, including graded metamaterial core and air cladding. The volume fraction of the graphene is gradually increased along the z-axis (negative direction of transmission). (b) The variation of horizontal effective permittivity with different chemical potential and different volume fraction of graphene when the λ = 5800 nm. (c) Permittivities of metamaterial under different wavelengths and different chemical potentials when fg = 0.034. The black and green lines are the real parts and imaginary parts of permittivities, respectively.
Fig. 2
Fig. 2 Effective permittivities of graphene-silica metamaterial along transmission direction. (a) The variation of permittivity along transmission direction with different wavelengths the μc = 0.45eV. (b) Permittivities of metamaterial along transmission direction under different chemical potentials when λ = 5800nm.
Fig. 3
Fig. 3 Magnetic field profiles of the symmetric plasmonic wave in metamaterial waveguide. (a) Schematic diagram of the symmetric plasmonic mode. (b) Front view of the magnetic field in metamaterial waveguide.
Fig. 4
Fig. 4 The relation of transverse wave numbers in symmetric plasmonic mode. (a) In the case of εm = −0.5, two symmetric plasmonic modes are always supported. (b) In the case of εm = −0.23, two intersections come into single point which means the mode degeneracy occurs.
Fig. 5
Fig. 5 The variation of normalized energy flow and effective refractive index along the transmission direction. (a) When λ = 5400 nm, the normalized optical power flow under different permittivity. Apparently the forward and backward modes vanish in a certain critical point. (b) The effective refractive index under different permittivity. Following the decrease of permittivity, the difference of effective refractive index is decreased. When μc = 0.55 eV, the characteristics is shown as orange area. In the same way when μc = 0.45 eV, the characteristics is shown as green area. (c) The stopping position of light at different wavelengths. The graded metamaterial waveguide trap the bandwidth light from 5400 to 5800 nm on an appropriate position.
Fig. 6
Fig. 6 Broadband absorption in metamaterial waveguide. (a) Variation of normalized power in forward process and reflection process. (b) Absorption region under different chemical potential of graphene. Over 90% light is absorbed.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

σ( ω, μ c ,Γ,T )= j e 2 ( ωj τ 1 ) π 2 [ 1 ( ωj τ 1 ) 2 0 ε( f d ( ε ) ε f d ( ε ) ε )dε 0 f d ( ε ) f d ( ε ) ( ωj τ 1 ) 2 4 ( ε/ ) 2 dε ]
ε m = f g ε gx + f s ε s + f p ε p
ε z = ( f g ε gz + f s ε s + f p ε p ) 1
f g = d 1 d 1 +( d 2 d 3 )+ d 3 =9.62× 10 7 (z120) 2 +0.02655
Plasmonic symmetric mode: ε a κ m ε m κ a =tanh( κ m d 2 )
Plasmonic antisymmetric mode: ε a κ m ε m κ a =coth( κ m d 2 )
β 2 κ m 2 ε m k 0 2 =0
β 2 κ a 2 ε a k 0 2 =0
κ m 2 k 0 2 ( ε a ε m )= ε a 2 ε m 2 κ m 2 coth 2 ( κ m d 2 )
ε a 2 ε m 2 κ m 2 coth 2 ( κ m d 2 )> κ m 2 > κ m 2 k 0 2 ( ε a ε m )
H y ={ Aexp[ κ a ( xa )+j( βzωt ) ]            (xa)  Bcosh( κ m x)exp[ j( βzωt ) ](axa) Aexp[ κ a ( xa )+j( βzωt ) ]            (xa)
A=Bcosh( κ m x)
E x ={ A(β/ω ε 0 ε a )exp[ κ a ( xa )+j( βzωt ) ](xa) B( β/ω ε 0 ε m )cosh( κ m x )exp[ j( βzωt ) ](axa) A(β/ω ε 0 ε a )exp[ κ a ( x+a )+j( βzωt ) ](xa)
P m = β B 2 [sinh( 2 κ m a )+2 κ m a] 2ω ε 0 ε m κ m
P a = β B 2 cos h 2 ( κ m a ) ω ε 0 ε a κ a
  P n = P i | P i | = P m + P a | P m |+| P a |

Metrics