Abstract

We present measurements of the full Jones matrix of individual pixels in a liquid-crystal display (LCD) panel. Employing a polarization-sensitive digital holographic microscopy based on Mach-Zehnder interferometry, the complex amplitudes of the light passing through individual LCD pixels are precisely measured with respect to orthogonal bases of polarization states, from which the full Jones matrix components of individual pixels are obtained. We also measure the changes in the Jones matrix of individual LCD pixels with respect to an applied bias. In addition, the complex optical responses of a LCD panel with respect to arbitrary polarization states of incident light were characterized from the measured Jones matrix.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix

Youngchan Kim, Joonwoo Jeong, Jaeduck Jang, Mahn Won Kim, and YongKeun Park
Opt. Express 20(9) 9948-9955 (2012)

Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens

Taeseok Daniel Yang, Kwanjun Park, Yong Guk Kang, Kyoung J. Lee, Beop-Min Kim, and Youngwoon Choi
Opt. Express 24(25) 29302-29311 (2016)

Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials

Xuan Liu, Yang Yang, Lu Han, and Cheng-Shan Guo
Opt. Express 25(7) 7288-7299 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Vol. 23.
  2. H. Kawamoto, “The History of Liquid-Crystal Displays,” Proc. IEEE 90(4), 460–500 (2002).
    [Crossref]
  3. R. H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology (John Wiley & Sons, 2011).
  4. G. H. Heilmeier, “Electro-Optical Device,” U.S. Patent 3,499,122 (1970).
  5. G. H. Heilmeier and L. Zanoni, “guest‐host interactions in nematic liquid crystals. a new electro‐optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
    [Crossref]
  6. J.-h. Kim and J.-k. Song, “Vertically aligned liquid crystal display,” U.S. Patent 6,424,396 (2002).
  7. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crytstal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  8. E. S. Kim and Y. K. Lee, “Fringe field switching liquid crystal display,” U.S. Patent 6,580,487 (2003).
  9. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “41.1: A Super‐High Image Quality Multi‐Domain Vertical Alignment LCD by New Rubbing‐Less Technology,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 1998), 1077–1080.
  10. Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
    [Crossref]
  11. M. Oh-e and K. Kondo, “Electro‐optical characteristics and switching behavior of the in‐plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [Crossref]
  12. D. H. Brainard, D. G. Pelli, and T. Robson, “Display characterization,” Encyclopedia of imaging science and technology (2002).
  13. A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16(3), 1669–1685 (2008).
    [Crossref] [PubMed]
  14. P. Boher, T. Leroux, and D. Glinel, “0.0: Polarization Imaging for characterization of LCDs and their components,” (2009).
  15. J. E. Bigelow and R. A. Kashnow, “Poincaré sphere analysis of liquid crystal optics,” Appl. Opt. 16(8), 2090–2096 (1977).
    [Crossref] [PubMed]
  16. S. Pancharatnam, “Generalized theory of interference, and its applications. Part I. Coherent pencils,” in Proceedings of the Indian Academy of Sciences, Section A, (Indian Academy of Sciences, 1956), 247–262.
  17. T. H. Chyba, L. J. Wang, L. Mandel, and R. Simon, “Measurement of the Pancharatnam phase for a light beam,” Opt. Lett. 13(7), 562–564 (1988).
    [Crossref] [PubMed]
  18. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. A 31(7), 488–493 (1941).
    [Crossref]
  19. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [Crossref] [PubMed]
  20. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [Crossref] [PubMed]
  21. T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
    [Crossref]
  22. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
    [Crossref] [PubMed]
  23. U. Schnars and W. Jueptner, Digital holography (Springer, 2005).
  24. R. K. Singh, D. N. Naik, H. Itou, Y. Miyamoto, and M. Takeda, “Stokes holography,” Opt. Lett. 37(5), 966–968 (2012).
    [Crossref] [PubMed]
  25. M. Yamauchi, A. Marquez, J. A. Davis, and D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 181(1-3), 1–6 (2000).
    [Crossref]
  26. C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
    [Crossref] [PubMed]
  27. V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)
  28. G. Lazarev and A. Sedashev, “Laser microinterferometer for estimation of red blood cell volume,” in Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII, (International Society for Optics and Photonics, 2007), 653516–653516–653517.
  29. V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
    [Crossref]
  30. S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
    [Crossref] [PubMed]
  31. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
  32. K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [Crossref] [PubMed]
  33. E. Hecht, “Optics, “Pearson Education,” Inc. 360, 366–367 (2002).
  34. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
    [Crossref] [PubMed]
  35. Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20(9), 9673–9681 (2012).
    [Crossref] [PubMed]
  36. J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
    [Crossref] [PubMed]
  37. D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
    [Crossref] [PubMed]
  38. T. Kato, “Self-assembly of phase-segregated liquid crystal structures,” Science 295(5564), 2414–2418 (2002).
    [Crossref] [PubMed]
  39. C. Tschierske, “Liquid crystal engineering--new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering,” Chem. Soc. Rev. 36(12), 1930–1970 (2007).
    [Crossref] [PubMed]
  40. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  41. P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
    [Crossref] [PubMed]
  42. W. Mickols, M. F. Maestre, I. Tinoco, and S. H. Embury, “Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(19), 6527–6531 (1985).
    [Crossref] [PubMed]

2013 (3)

C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Appl. Opt. 52(28), 6877–6883 (2013).
[Crossref] [PubMed]

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

S. K. Debnath and Y. Park, “Real-time quantitative phase imaging with a spatial phase-shifting algorithm,” Opt. Lett. 36(23), 4677–4679 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (2)

2007 (3)

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

C. Tschierske, “Liquid crystal engineering--new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering,” Chem. Soc. Rev. 36(12), 1930–1970 (2007).
[Crossref] [PubMed]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

2005 (2)

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44(21), 4461–4469 (2005).
[Crossref] [PubMed]

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

2002 (3)

H. Kawamoto, “The History of Liquid-Crystal Displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

T. Kato, “Self-assembly of phase-segregated liquid crystal structures,” Science 295(5564), 2414–2418 (2002).
[Crossref] [PubMed]

E. Hecht, “Optics, “Pearson Education,” Inc. 360, 366–367 (2002).

2000 (1)

M. Yamauchi, A. Marquez, J. A. Davis, and D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 181(1-3), 1–6 (2000).
[Crossref]

1995 (1)

M. Oh-e and K. Kondo, “Electro‐optical characteristics and switching behavior of the in‐plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

1988 (1)

1985 (1)

W. Mickols, M. F. Maestre, I. Tinoco, and S. H. Embury, “Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(19), 6527–6531 (1985).
[Crossref] [PubMed]

1977 (1)

1971 (1)

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crytstal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

1968 (2)

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

G. H. Heilmeier and L. Zanoni, “guest‐host interactions in nematic liquid crystals. a new electro‐optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

1941 (1)

R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. A 31(7), 488–493 (1941).
[Crossref]

Andreev, V.

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

Baek, J. H.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Berger, A.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Bigelow, J. E.

Boher, P.

P. Boher, T. Leroux, and D. Glinel, “0.0: Polarization Imaging for characterization of LCDs and their components,” (2009).

Campos, J.

Chang, G.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Cho, S.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Choi, M. C.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Choi, W.

Chyba, T. H.

Colomb, T.

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Cuche, E.

Dasari, R.

Davis, J. A.

M. Yamauchi, A. Marquez, J. A. Davis, and D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 181(1-3), 1–6 (2000).
[Crossref]

Debnath, S. K.

Depeursinge, C.

Dmitriev, S.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Dürr, F.

Embury, S. H.

W. Mickols, M. F. Maestre, I. Tinoco, and S. H. Embury, “Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(19), 6527–6531 (1985).
[Crossref] [PubMed]

Feld, M. S.

Franich, D. J.

M. Yamauchi, A. Marquez, J. A. Davis, and D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 181(1-3), 1–6 (2000).
[Crossref]

Geier, F.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Ghadyani, Z.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Gillette, M. U.

Glinel, D.

P. Boher, T. Leroux, and D. Glinel, “0.0: Polarization Imaging for characterization of LCDs and their components,” (2009).

Haist, T.

Harder, I.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Hecht, E.

E. Hecht, “Optics, “Pearson Education,” Inc. 360, 366–367 (2002).

Heilmeier, G. H.

G. H. Heilmeier and L. Zanoni, “guest‐host interactions in nematic liquid crystals. a new electro‐optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crytstal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Heo, J. H.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Iemmi, C.

Indukaev, K.

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

Ioselev, O.

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

Itou, H.

Jang, J.

Jang, Y.

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Jeong, J.

Jo, Y. J.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jones, R. C.

R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. A 31(7), 488–493 (1941).
[Crossref]

Jung, H.-T.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Jung, J.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Jung, J. H.

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Kashnow, R. A.

Kato, T.

T. Kato, “Self-assembly of phase-segregated liquid crystal structures,” Science 295(5564), 2414–2418 (2002).
[Crossref] [PubMed]

Kawamoto, H.

H. Kawamoto, “The History of Liquid-Crystal Displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

Kim, K.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Kim, K. J.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Kim, M. W.

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Kim, Y.

Kim, Y. H.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Kondo, K.

M. Oh-e and K. Kondo, “Electro‐optical characteristics and switching behavior of the in‐plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Koppa, P.

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

Lavrentovich, O. D.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Lazarev, G.

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

Lee, K.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, S.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Lee, S. H.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Legkii, A.

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

Leroux, T.

P. Boher, T. Leroux, and D. Glinel, “0.0: Polarization Imaging for characterization of LCDs and their components,” (2009).

Lim, Y. J.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Limberger, H. G.

Lindlein, N.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Lingel, C.

Lizana, A.

Maestre, M. F.

W. Mickols, M. F. Maestre, I. Tinoco, and S. H. Embury, “Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(19), 6527–6531 (1985).
[Crossref] [PubMed]

Mandel, L.

Mantel, K.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Marquet, P.

Marquez, A.

M. Yamauchi, A. Marquez, J. A. Davis, and D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 181(1-3), 1–6 (2000).
[Crossref]

Márquez, A.

McCarty, D. J.

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Mickols, W.

W. Mickols, M. F. Maestre, I. Tinoco, and S. H. Embury, “Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(19), 6527–6531 (1985).
[Crossref] [PubMed]

Millet, L. J.

Miyamoto, Y.

Moreno, I.

Mukherjee, A.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Naik, D. N.

Nercissian, V.

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

Oh, S. H.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro‐optical characteristics and switching behavior of the in‐plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Orlov, D.

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

Osten, W.

Park, H.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Park, Y.

Park, Y. K.

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Phelps, P.

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Popescu, G.

Salathé, R.-P.

Sarkadi, T.

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crytstal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Simon, R.

Singh, R. K.

Steele, A. D.

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Takeda, M.

Tinoco, I.

W. Mickols, M. F. Maestre, I. Tinoco, and S. H. Embury, “Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(19), 6527–6531 (1985).
[Crossref] [PubMed]

Tschierske, C.

C. Tschierske, “Liquid crystal engineering--new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering,” Chem. Soc. Rev. 36(12), 1930–1970 (2007).
[Crossref] [PubMed]

Wang, L. J.

Wang, Z.

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Woo, C. W.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Yamauchi, M.

M. Yamauchi, A. Marquez, J. A. Davis, and D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 181(1-3), 1–6 (2000).
[Crossref]

Yamauchi, T.

Yang, M. S.

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

Yoon, D. K.

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Yzuel, M. J.

Zanoni, L.

G. H. Heilmeier and L. Zanoni, “guest‐host interactions in nematic liquid crystals. a new electro‐optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

Anal. Chem. (1)

J. H. Jung, J. Jang, and Y. Park, “Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging,” Anal. Chem. 85(21), 10519–10525 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

M. Oh-e and K. Kondo, “Electro‐optical characteristics and switching behavior of the in‐plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

G. H. Heilmeier and L. Zanoni, “guest‐host interactions in nematic liquid crystals. a new electro‐optic effect,” Appl. Phys. Lett. 13(3), 91–92 (1968).
[Crossref]

M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crytstal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Chem. Soc. Rev. (1)

C. Tschierske, “Liquid crystal engineering--new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering,” Chem. Soc. Rev. 36(12), 1930–1970 (2007).
[Crossref] [PubMed]

Inc. (1)

E. Hecht, “Optics, “Pearson Education,” Inc. 360, 366–367 (2002).

J. Opt. (1)

T. Sarkadi and P. Koppa, “Measurement of the Jones matrix of liquid crystal displays using a common path interferometer,” J. Opt. 13(3), 035404 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. A 31(7), 488–493 (1941).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. J. Lim, C. W. Woo, S. H. Oh, A. Mukherjee, S. H. Lee, J. H. Baek, K. J. Kim, and M. S. Yang, “Enhanced contrast ratio of homogeneously aligned liquid crystal displays by controlling the surface-anchoring strength,” J. Phys. D Appl. Phys. 44(32), 325403 (2011).
[Crossref]

J. Russ. Laser Res. (1)

V. Andreev, K. Indukaev, O. Ioselev, A. Legkii, G. Lazarev, and D. Orlov, “Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements,” J. Russ. Laser Res. 26(5), 394–401 (2005).
[Crossref]

JAMA (1)

P. Phelps, A. D. Steele, and D. J. McCarty., “Compensated polarized light microscopy. Identification of crystals in synovial fluids from gout and pseudogout,” JAMA 203(7), 508–512 (1968).
[Crossref] [PubMed]

Nat. Mater. (2)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

D. K. Yoon, M. C. Choi, Y. H. Kim, M. W. Kim, O. D. Lavrentovich, and H.-T. Jung, “Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals,” Nat. Mater. 6(11), 866–870 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Yamauchi, A. Marquez, J. A. Davis, and D. J. Franich, “Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatial light modulators,” Opt. Commun. 181(1-3), 1–6 (2000).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Proc. IEEE (1)

H. Kawamoto, “The History of Liquid-Crystal Displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Mickols, M. F. Maestre, I. Tinoco, and S. H. Embury, “Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light,” Proc. Natl. Acad. Sci. U.S.A. 82(19), 6527–6531 (1985).
[Crossref] [PubMed]

Science (1)

T. Kato, “Self-assembly of phase-segregated liquid crystal structures,” Science 295(5564), 2414–2418 (2002).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. H. Heo, S. Cho, S. Lee, G. Chang, Y. J. Jo, H. Park, and Y. K. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[Crossref] [PubMed]

Other (13)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

U. Schnars and W. Jueptner, Digital holography (Springer, 2005).

V. Nercissian, F. Geier, A. Berger, S. Dmitriev, Z. Ghadyani, I. Harder, K. Mantel, and N. Lindlein, “Phase measurement of a spatially varying polarization distribution,” in Proceedings of 113th Annual Meeting of the DGaO, 2012)

G. Lazarev and A. Sedashev, “Laser microinterferometer for estimation of red blood cell volume,” in Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII, (International Society for Optics and Photonics, 2007), 653516–653516–653517.

R. H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology (John Wiley & Sons, 2011).

G. H. Heilmeier, “Electro-Optical Device,” U.S. Patent 3,499,122 (1970).

J.-h. Kim and J.-k. Song, “Vertically aligned liquid crystal display,” U.S. Patent 6,424,396 (2002).

P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Vol. 23.

E. S. Kim and Y. K. Lee, “Fringe field switching liquid crystal display,” U.S. Patent 6,580,487 (2003).

A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “41.1: A Super‐High Image Quality Multi‐Domain Vertical Alignment LCD by New Rubbing‐Less Technology,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 1998), 1077–1080.

S. Pancharatnam, “Generalized theory of interference, and its applications. Part I. Coherent pencils,” in Proceedings of the Indian Academy of Sciences, Section A, (Indian Academy of Sciences, 1956), 247–262.

P. Boher, T. Leroux, and D. Glinel, “0.0: Polarization Imaging for characterization of LCDs and their components,” (2009).

D. H. Brainard, D. G. Pelli, and T. Robson, “Display characterization,” Encyclopedia of imaging science and technology (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Polarization-sensitive DHM based on Mach-Zehnder interferometry. (b) A set of measured interferograms with different polarizer and analyzer compositions. Inset: Single pixels of the IPs-LCD is constituted by two subpixels. (c) Amplitude and (d) phase maps of corresponding interferograms. Scale bar, 300 μm.
Fig. 2
Fig. 2 Measurements of the full Jones matrix of individual pixels in a IPS-LCD. (a) Amplitude and (b) phase of spatially resolved Jones matrix components of the individual pixels. Half of the maximum bias was applied to the pixel in the center. Scale bar, 300 μm.
Fig. 3
Fig. 3 (a) Amplitude and (b) phase modulation characteristics of the Jones matrix components of individual pixels in an IPS-LCD panel as a function of applied bias. Five measurements were performed for different pixels in the IPS-LCD. Blue lines, averaged value. Shade areas, standard error.
Fig. 4
Fig. 4 Polarization ellipses of light transmitting individual pixels in IPS-LCD with respect to the (a) x-polarized and (b) y-polarized incident light.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J=[ J 11 J 12 J 21 J 22 ]
E +45 = c 1 [ 1 1 ], E 45 = c 2 [ 1 1 ],
[ Y 11 Y 12 Y 21 Y 22 ]=[ c 1 c 1 0 0 c 2 c 2 0 0 0 0 c 1 c 1 0 0 c 2 c 2 ][ J 11 J 12 J 21 J 22 ],
E 1 = A 1 e i ϕ 1 , E 2 = A 2 e i ϕ 2
x=| A 1 |cos( ϕ 1 +t ) y=| A 2 |cos( ϕ 2 +t )

Metrics