Abstract

Color Shift Keying (CSK) is a new modulation scheme for visible light communication systems using RGB LEDs which has been standardized in the PHY III level of the IEEE 802.15.7. This paper proposes some modifications so as to include multiuser capabilities provided by a time-based multiplexing, with the modulation constellation symbols being adapted to encode data with the luminux powers of the red, green and blue color bands respectively. This is achieved by employing a simple and low-complexity time-based pulse signals structure to separate the users’ data symbols, while a three-dimensional signal constellation design is merged to improve data throughput. Numerical simulations are carried out to assess the performance of this novel architecture. The statistical properties of the transmitted RGB signals ensure dimming capabilities and that the illumination function is unaffected by flickering.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Smart LED allocation scheme for efficient multiuser visible light communication networks

Atul Sewaiwar, Samrat Vikramaditya Tiwari, and Yeon Ho Chung
Opt. Express 23(10) 13015-13024 (2015)

Hybrid Visible Light and Power Line Communication for Indoor Multiuser Downlink

Hao Ma, Lutz Lampe, and Steve Hranilovic
J. Opt. Commun. Netw. 9(8) 635-647 (2017)

Scheduling for indoor visible light communication based on graph theory

Yuyang Tao, Xiao Liang, Jiaheng Wang, and Chunming Zhao
Opt. Express 23(3) 2737-2752 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Nakagawa, “Visible light communications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems TechnologiesOctober 2007.
  2. A. Jovicic, J. Li, and T. Richardson, “Visible Light Communication: Opportunities, Challenges and the Path to Market,” IEEE Communications Magazine 51(12), 26–32 (2013).
    [Crossref]
  3. J. Gancarz, H. Elgala, and T. D.C. Little, “Impact of Lighting Requirements on VLC Systems,” IEEE Communications Magazine 51(12), 34–41 (2013).
    [Crossref]
  4. L. Grobe, A. Paraskevopoulos, J. Hilt, and D. Schulz, “High-Speed Visible Light Communication Systems,” IEEE Communications Magazine 51(12), 60–66 (2013).
    [Crossref]
  5. J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Communications Magazine 51(12), 68–73, (2013).
    [Crossref]
  6. Y. Shun-Hsiang, O. Shih, T. Hsin-Mu, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Communications Magazine 51(12), 50–59 (2013).
    [Crossref]
  7. Visible Light Communication Consortium., VLCC: Home. [Online]. Available: http://www.vlcc.net (Accessed: 28 May 2014)
  8. European Commission., Project hOME Gigabit Access. [Online]. Available: http://www.ict-omega.eu/ (Accessed: 28 May 2014)
  9. Byte Light., Indoor Location Based Software. [Online]. Available: http://www.bytelight.com/ (Accessed: 28 May 2014)
  10. S. Rajagopal, R.D. Roberts, and S. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine 50(3), 72–82 (2012).
    [Crossref]
  11. Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a Precoding MIMO System for Decentralized Multiuser Indoor Visible Light Communications,” IEEE Photonics Journal 5(4), 7800211 (2013).
    [Crossref]
  12. O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
    [Crossref]
  13. Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.
  14. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Communications Magazine 49(9), 56–62 (2011).
    [Crossref]
  15. O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
    [Crossref]
  16. E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” in IEEE Globecom Workshops1224–1228 (2012).
  17. O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels,” Opt. Express 19(3), 1997–2005 (2011).
    [Crossref] [PubMed]
  18. “IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light,” September 2011.

2013 (6)

A. Jovicic, J. Li, and T. Richardson, “Visible Light Communication: Opportunities, Challenges and the Path to Market,” IEEE Communications Magazine 51(12), 26–32 (2013).
[Crossref]

J. Gancarz, H. Elgala, and T. D.C. Little, “Impact of Lighting Requirements on VLC Systems,” IEEE Communications Magazine 51(12), 34–41 (2013).
[Crossref]

L. Grobe, A. Paraskevopoulos, J. Hilt, and D. Schulz, “High-Speed Visible Light Communication Systems,” IEEE Communications Magazine 51(12), 60–66 (2013).
[Crossref]

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Communications Magazine 51(12), 68–73, (2013).
[Crossref]

Y. Shun-Hsiang, O. Shih, T. Hsin-Mu, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Communications Magazine 51(12), 50–59 (2013).
[Crossref]

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a Precoding MIMO System for Decentralized Multiuser Indoor Visible Light Communications,” IEEE Photonics Journal 5(4), 7800211 (2013).
[Crossref]

2012 (1)

S. Rajagopal, R.D. Roberts, and S. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine 50(3), 72–82 (2012).
[Crossref]

2011 (2)

2007 (1)

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
[Crossref]

2005 (1)

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
[Crossref]

Armstrong, J.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Communications Magazine 51(12), 68–73, (2013).
[Crossref]

Ayala, A.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels,” Opt. Express 19(3), 1997–2005 (2011).
[Crossref] [PubMed]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
[Crossref]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
[Crossref]

Chen, J.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a Precoding MIMO System for Decentralized Multiuser Indoor Visible Light Communications,” IEEE Photonics Journal 5(4), 7800211 (2013).
[Crossref]

Chi, N.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

Elgala, H.

J. Gancarz, H. Elgala, and T. D.C. Little, “Impact of Lighting Requirements on VLC Systems,” IEEE Communications Magazine 51(12), 34–41 (2013).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Communications Magazine 49(9), 56–62 (2011).
[Crossref]

Gancarz, J.

J. Gancarz, H. Elgala, and T. D.C. Little, “Impact of Lighting Requirements on VLC Systems,” IEEE Communications Magazine 51(12), 34–41 (2013).
[Crossref]

Gonzalez, O.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels,” Opt. Express 19(3), 1997–2005 (2011).
[Crossref] [PubMed]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
[Crossref]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
[Crossref]

Grobe, L.

L. Grobe, A. Paraskevopoulos, J. Hilt, and D. Schulz, “High-Speed Visible Light Communication Systems,” IEEE Communications Magazine 51(12), 60–66 (2013).
[Crossref]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Communications Magazine 49(9), 56–62 (2011).
[Crossref]

Hilt, J.

L. Grobe, A. Paraskevopoulos, J. Hilt, and D. Schulz, “High-Speed Visible Light Communication Systems,” IEEE Communications Magazine 51(12), 60–66 (2013).
[Crossref]

Hong, Y.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a Precoding MIMO System for Decentralized Multiuser Indoor Visible Light Communications,” IEEE Photonics Journal 5(4), 7800211 (2013).
[Crossref]

Hranilovic, S.

E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” in IEEE Globecom Workshops1224–1228 (2012).

Hsin-Mu, T.

Y. Shun-Hsiang, O. Shih, T. Hsin-Mu, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Communications Magazine 51(12), 50–59 (2013).
[Crossref]

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible Light Communication: Opportunities, Challenges and the Path to Market,” IEEE Communications Magazine 51(12), 26–32 (2013).
[Crossref]

Li, J.

A. Jovicic, J. Li, and T. Richardson, “Visible Light Communication: Opportunities, Challenges and the Path to Market,” IEEE Communications Magazine 51(12), 26–32 (2013).
[Crossref]

Lim, S.

S. Rajagopal, R.D. Roberts, and S. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine 50(3), 72–82 (2012).
[Crossref]

Little, T. D.C.

J. Gancarz, H. Elgala, and T. D.C. Little, “Impact of Lighting Requirements on VLC Systems,” IEEE Communications Magazine 51(12), 34–41 (2013).
[Crossref]

Lu, X.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

Mendoza, B. R.

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Communications Magazine 49(9), 56–62 (2011).
[Crossref]

Monteiro, E.

E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” in IEEE Globecom Workshops1224–1228 (2012).

Nakagawa, M.

M. Nakagawa, “Visible light communications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems TechnologiesOctober 2007.

Neild, A.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Communications Magazine 51(12), 68–73, (2013).
[Crossref]

Paraskevopoulos, A.

L. Grobe, A. Paraskevopoulos, J. Hilt, and D. Schulz, “High-Speed Visible Light Communication Systems,” IEEE Communications Magazine 51(12), 60–66 (2013).
[Crossref]

Perez-Jimenez, R.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels,” Opt. Express 19(3), 1997–2005 (2011).
[Crossref] [PubMed]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
[Crossref]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
[Crossref]

Rabadan, J.

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
[Crossref]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
[Crossref]

Rajagopal, S.

S. Rajagopal, R.D. Roberts, and S. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine 50(3), 72–82 (2012).
[Crossref]

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible Light Communication: Opportunities, Challenges and the Path to Market,” IEEE Communications Magazine 51(12), 26–32 (2013).
[Crossref]

Roberts, R.

Y. Shun-Hsiang, O. Shih, T. Hsin-Mu, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Communications Magazine 51(12), 50–59 (2013).
[Crossref]

Roberts, R.D.

S. Rajagopal, R.D. Roberts, and S. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine 50(3), 72–82 (2012).
[Crossref]

Rodriguez, S.

O. Gonzalez, S. Rodriguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, “Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels,” Opt. Express 19(3), 1997–2005 (2011).
[Crossref] [PubMed]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
[Crossref]

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
[Crossref]

Schulz, D.

L. Grobe, A. Paraskevopoulos, J. Hilt, and D. Schulz, “High-Speed Visible Light Communication Systems,” IEEE Communications Magazine 51(12), 60–66 (2013).
[Crossref]

Sekercioglu, Y.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Communications Magazine 51(12), 68–73, (2013).
[Crossref]

Shang, H.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

Shao, Y.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

Shih, O.

Y. Shun-Hsiang, O. Shih, T. Hsin-Mu, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Communications Magazine 51(12), 50–59 (2013).
[Crossref]

Shun-Hsiang, Y.

Y. Shun-Hsiang, O. Shih, T. Hsin-Mu, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Communications Magazine 51(12), 50–59 (2013).
[Crossref]

Wang, Y.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

Wang, Z.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a Precoding MIMO System for Decentralized Multiuser Indoor Visible Light Communications,” IEEE Photonics Journal 5(4), 7800211 (2013).
[Crossref]

Yu, C.

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a Precoding MIMO System for Decentralized Multiuser Indoor Visible Light Communications,” IEEE Photonics Journal 5(4), 7800211 (2013).
[Crossref]

Yu, J.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

IEE Proc. Optoelectronics (1)

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “OFDM over Indoor Wireless Optical Channel,” IEE Proc. Optoelectronics 152(4), 199–204 (2005).
[Crossref]

IEEE Communications Magazine (7)

S. Rajagopal, R.D. Roberts, and S. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine 50(3), 72–82 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Communications Magazine 49(9), 56–62 (2011).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible Light Communication: Opportunities, Challenges and the Path to Market,” IEEE Communications Magazine 51(12), 26–32 (2013).
[Crossref]

J. Gancarz, H. Elgala, and T. D.C. Little, “Impact of Lighting Requirements on VLC Systems,” IEEE Communications Magazine 51(12), 34–41 (2013).
[Crossref]

L. Grobe, A. Paraskevopoulos, J. Hilt, and D. Schulz, “High-Speed Visible Light Communication Systems,” IEEE Communications Magazine 51(12), 60–66 (2013).
[Crossref]

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Communications Magazine 51(12), 68–73, (2013).
[Crossref]

Y. Shun-Hsiang, O. Shih, T. Hsin-Mu, and R. Roberts, “Smart automotive lighting for vehicle safety,” IEEE Communications Magazine 51(12), 50–59 (2013).
[Crossref]

IEEE Photonics Journal (1)

Y. Hong, J. Chen, Z. Wang, and C. Yu, “Performance of a Precoding MIMO System for Decentralized Multiuser Indoor Visible Light Communications,” IEEE Photonics Journal 5(4), 7800211 (2013).
[Crossref]

IET Optoelectronics (1)

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, and A. Ayala, “Multi User OFDM System for Communications over the Indoor Wireless Optical Channels,” IET Optoelectronics 1(2), 68–76 (2007).
[Crossref]

Opt. Express (1)

Other (7)

M. Nakagawa, “Visible light communications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems TechnologiesOctober 2007.

E. Monteiro and S. Hranilovic, “Constellation design for color-shift keying using interior point methods,” in IEEE Globecom Workshops1224–1228 (2012).

“IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light,” September 2011.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s Asynchronous Bi-Directional 64QAM-OFDM SCM-WDM Transmission over RGB-LED Based Visible Light Communication System,” 2013 OSA OFC/NFOEC Technical Digest paper OTh1G.3.

Visible Light Communication Consortium., VLCC: Home. [Online]. Available: http://www.vlcc.net (Accessed: 28 May 2014)

European Commission., Project hOME Gigabit Access. [Online]. Available: http://www.ict-omega.eu/ (Accessed: 28 May 2014)

Byte Light., Indoor Location Based Software. [Online]. Available: http://www.bytelight.com/ (Accessed: 28 May 2014)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Block diagram of the proposed multiuser CSK scheme for indoor applications.

Fig. 2
Fig. 2

Example of multiple data communication using the proposed MU-CSK scheme with RGB light sources.

Fig. 3
Fig. 3

Channel impulse response for the room scenario described in Table 2.

Fig. 4
Fig. 4

SER performance of the proposed MU-CSK scheme for a single-user case using different signal constellations (M=4, 8 and 16).

Fig. 5
Fig. 5

SER performance of the proposed MU-VLC system for different number of users, the constellation size is fixed to M = 4 for all users.

Fig. 6
Fig. 6

Throughput performance comparison for different constellation sizes and clock rates.

Fig. 7
Fig. 7

Distribution function for Xi, as given in (13), with M = 8 and U = 8.

Tables (2)

Tables Icon

Table 1 Optimized 3D Constellations for M = 4, 8 and 16.

Tables Icon

Table 2 Room configuration for simulations.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

s j , m = [ P j , m 1 , P j , m 2 , P j , m 3 ] T 𝕏 j
g j i ( t ) = P j , m i ϕ j ( t ) 0 t T s
ϕ j ( t ) = { 1 for ( j 1 ) T p t j T p 0 otherwise
0 T s ϕ j ( t ) ϕ l ( t ) d t = δ i , l
x i ( t ) = j = 1 U g j i ( t ) .
r j i ( t ) = R i h j i ( t ) * x i ( t ) + n j i ( t ) 0 t T s
r j i = H j i ( l = 1 U x l i ) + n j i
z j T r j i = h j i P j , m i + z j T n j i .
s ^ j , m = arg min s j , m X j y j h j s j , m 2
max d ( 𝕏 j )
d ( 𝕏 j ) = min s j , m s j , k ( + ) 3 s j , m s j , k 2 subject to s j , m 2 = P T for m = 1 , M , # 𝕏 j = M
SNR = P T N 0 W
ρ = U log 2 M 1 T s bits / s
X i = t t + T s x i ( t ) d t
P T s = E [ i = 1 3 X i ]
E [ X i ] = E [ j = 1 U P j , m i ] T p .
P T s = E [ j = 1 U ( P j , m 1 + P j , m 2 + P j , m 3 ) ] T p = T p j = 1 U P ¯ j

Metrics