Abstract

We propose a photonic crystal slab-based 1 × 3 power splitter with high output transmission and equal power distribution. It is designed by cascading an asymmetric 1 × 2 power splitter and a symmetric 1 × 2 power splitter. Desired equal power splitting is achieved by introducing and optimizing the splitting region of the 1 × 2 power splitters with flexible structural defects. Simulations were carried out by using 3-D Finite Difference Time Domain method showing equal normalized power distributions of 29.6%, 28.9% and 30.5% at 1550 nm optical wavelength. In addition, equal power splitting also takes place at 1561 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides

Min Zhang, Radu Malureanu, Asger Christian Krüger, and Martin Kristensen
Opt. Express 18(14) 14944-14949 (2010)

Three-dimensional power splitter based on self-imaging effect in multimode layer-by-layer photonic crystal waveguides

Tianbao Yu, Nianhua Liu, Qinghua Liao, Dongying Zhang, and Jianyi Yang
Appl. Opt. 51(10) 1581-1585 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
    [Crossref] [PubMed]
  2. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at approximately ~1.6- mum wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27(16), 1400–1402 (2002).
    [Crossref] [PubMed]
  3. R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, “Efficient photonic crystal Y-junctions,” J. Opt. A, Pure Appl. Opt. 5(4), S76–S80 (2003).
    [Crossref]
  4. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, “Ultralow-loss 3-dB photonic crystal waveguide splitter,” Opt. Lett. 29(14), 1623–1625 (2004).
    [Crossref] [PubMed]
  5. N. Nozhat and N. Granpayeh, “Analysis and simulation of a photonic crystal power divider,” J. Appl. Sci. 7, 3576–3579 (2007).
    [Crossref]
  6. S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40, 863–872 (2010).
  7. L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22(13), 966–968 (2010).
    [Crossref]
  8. M. Djavid, A. Ghaffari, F. Monifi, and M. S. Abrishamian, “Photonic crystal power dividers using L-shaped bend based on ring resonators,” J. Opt. Soc. Am. B 25(8), 1231–1235 (2008).
    [Crossref]
  9. C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
    [Crossref]
  10. M. Zhang, R. Malureanu, A. C. Krüger, and M. Kristensen, “1×3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides,” Opt. Express 18(14), 14944–14949 (2010).
    [Crossref] [PubMed]
  11. D. C. Tee, T. Kambayashi, S. R. Sandoghchi, N. Tamchek, and F. R. M. Adikan, “Efficient, wide angle, structure tuned 1×3 photonic crystal power splitter at 1550 nm for triple play applications,” J. Lightwave Technol. 30(17), 2818–2823 (2012).
    [Crossref]
  12. Z. Wang, L. Shen, X. Zhang, and X. Zheng, “Highly efficient photonic-crystal splitters based on one-way waveguiding,” J. Opt. Soc. Am. B 30(1), 173–176 (2013).
    [Crossref]
  13. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  14. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and H. Lee, “Photonic crystal power-splitter based on directional coupling,” Opt. Express 12(15), 3599–3604 (2004).
    [Crossref] [PubMed]
  15. Y. Zhang, Z. Li, and B. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express 14(7), 2679–2689 (2006).
    [Crossref] [PubMed]
  16. I. Andonegui, I. Calvo, and A. J. Garcia-Adeva, “Inversedesign and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits,” Appl. Phys., A Mater. Sci. Process. 115, 1–6 (2013).
  17. D. C. Tee, Y. G. Shee, N. Tamchek, and F. R. M. Adikan, “Structure tuned, high transmission 180° waveguide bend in 2D planar photonic crystal,” IEEE Photon. Technol. Lett. 25(15), 1443–1446 (2013).
    [Crossref]
  18. K. Kurokawa, An Introduction to the Theory of Microwave Circuits (Elsevier, 1969).
  19. S. G. Johnson and J. D. Joannopoulos, “MIT Photonic-Bands package,” The MIT Photonic-Bands Package Home Page, http://ab-initio.mit.edu/mpb/ (2008).
  20. M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
    [Crossref]
  21. O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
    [Crossref] [PubMed]
  22. S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett. 27(12), 1001–1003 (2002).
    [Crossref] [PubMed]
  23. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  24. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  25. L. Tang and T. Yoshie, “High-Q hybrid 3D-2D slab-3D photonic crystal microcavity,” Opt. Lett. 35(18), 3144–3146 (2010).
    [Crossref] [PubMed]
  26. D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
    [Crossref] [PubMed]
  27. X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
    [Crossref]
  28. A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

2013 (4)

Z. Wang, L. Shen, X. Zhang, and X. Zheng, “Highly efficient photonic-crystal splitters based on one-way waveguiding,” J. Opt. Soc. Am. B 30(1), 173–176 (2013).
[Crossref]

I. Andonegui, I. Calvo, and A. J. Garcia-Adeva, “Inversedesign and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits,” Appl. Phys., A Mater. Sci. Process. 115, 1–6 (2013).

D. C. Tee, Y. G. Shee, N. Tamchek, and F. R. M. Adikan, “Structure tuned, high transmission 180° waveguide bend in 2D planar photonic crystal,” IEEE Photon. Technol. Lett. 25(15), 1443–1446 (2013).
[Crossref]

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
[Crossref]

2010 (4)

M. Zhang, R. Malureanu, A. C. Krüger, and M. Kristensen, “1×3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides,” Opt. Express 18(14), 14944–14949 (2010).
[Crossref] [PubMed]

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40, 863–872 (2010).

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

L. Tang and T. Yoshie, “High-Q hybrid 3D-2D slab-3D photonic crystal microcavity,” Opt. Lett. 35(18), 3144–3146 (2010).
[Crossref] [PubMed]

2009 (1)

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

2008 (2)

X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
[Crossref]

M. Djavid, A. Ghaffari, F. Monifi, and M. S. Abrishamian, “Photonic crystal power dividers using L-shaped bend based on ring resonators,” J. Opt. Soc. Am. B 25(8), 1231–1235 (2008).
[Crossref]

2007 (2)

2006 (1)

2004 (2)

2003 (1)

R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, “Efficient photonic crystal Y-junctions,” J. Opt. A, Pure Appl. Opt. 5(4), S76–S80 (2003).
[Crossref]

2002 (2)

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Abrishamian, M. S.

Adikan, F. R. M.

D. C. Tee, Y. G. Shee, N. Tamchek, and F. R. M. Adikan, “Structure tuned, high transmission 180° waveguide bend in 2D planar photonic crystal,” IEEE Photon. Technol. Lett. 25(15), 1443–1446 (2013).
[Crossref]

D. C. Tee, T. Kambayashi, S. R. Sandoghchi, N. Tamchek, and F. R. M. Adikan, “Efficient, wide angle, structure tuned 1×3 photonic crystal power splitter at 1550 nm for triple play applications,” J. Lightwave Technol. 30(17), 2818–2823 (2012).
[Crossref]

Ananth, M.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Andonegui, I.

I. Andonegui, I. Calvo, and A. J. Garcia-Adeva, “Inversedesign and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits,” Appl. Phys., A Mater. Sci. Process. 115, 1–6 (2013).

Baets, R.

Beccherelli, R.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Beckx, S.

Bellini, B.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Bogaerts, W.

Bona, G. L.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Borel, P. I.

Boscolo, S.

Bur, J.

Calvo, I.

I. Andonegui, I. Calvo, and A. J. Garcia-Adeva, “Inversedesign and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits,” Appl. Phys., A Mater. Sci. Process. 115, 1–6 (2013).

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Chen, X. Y.

X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
[Crossref]

Chow, E.

Danaie, M.

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40, 863–872 (2010).

de Ridder, R. M.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

Djavid, M.

Dumon, P.

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Ferranti, D.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Foghani, S.

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40, 863–872 (2010).

Frandsen, L. H.

Garcia-Adeva, A. J.

I. Andonegui, I. Calvo, and A. J. Garcia-Adeva, “Inversedesign and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits,” Appl. Phys., A Mater. Sci. Process. 115, 1–6 (2013).

Ghaffari, A.

Granpayeh, N.

N. Nozhat and N. Granpayeh, “Analysis and simulation of a photonic crystal power divider,” J. Appl. Sci. 7, 3576–3579 (2007).
[Crossref]

Hafner, C.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Harpøth, A.

Hoekstra, H. J. W. M.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

Huynh, C.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Jefimovs, K.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Joannopoulos, J. D.

S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at approximately ~1.6- mum wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27(16), 1400–1402 (2002).
[Crossref] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Johnson, S. G.

Kaatuzian, H.

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40, 863–872 (2010).

Kambayashi, T.

Karle, T. J.

R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, “Efficient photonic crystal Y-junctions,” J. Opt. A, Pure Appl. Opt. 5(4), S76–S80 (2003).
[Crossref]

Kauppinen, L. J.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

Kim, H. J.

Krauss, T. F.

R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, “Efficient photonic crystal Y-junctions,” J. Opt. A, Pure Appl. Opt. 5(4), S76–S80 (2003).
[Crossref]

S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett. 27(12), 1001–1003 (2002).
[Crossref] [PubMed]

Kriezis, E. E.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Kristensen, M.

Krüger, A. C.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Lee, H.

Lee, H. S.

Lee, S. G.

Li, B.

Li, H.

X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
[Crossref]

Li, Z.

Lin, S. Y.

Liu, C. Y.

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
[Crossref]

Malureanu, R.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Midrio, M.

Moerman, I.

R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, “Efficient photonic crystal Y-junctions,” J. Opt. A, Pure Appl. Opt. 5(4), S76–S80 (2003).
[Crossref]

Monifi, F.

Moon, K. M.

Ni, B.

X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
[Crossref]

Notte, J.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Nozhat, N.

N. Nozhat and N. Granpayeh, “Analysis and simulation of a photonic crystal power divider,” J. Appl. Sci. 7, 3576–3579 (2007).
[Crossref]

O, B. H.

Park, I.

Park, S. G.

Pinkert, T. J.

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

Qiu, Y. S.

X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
[Crossref]

Sandoghchi, S. R.

Sanford, C.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Scholder, O.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Scipioni, L.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Sennhauser, U.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Shee, Y. G.

D. C. Tee, Y. G. Shee, N. Tamchek, and F. R. M. Adikan, “Structure tuned, high transmission 180° waveguide bend in 2D planar photonic crystal,” IEEE Photon. Technol. Lett. 25(15), 1443–1446 (2013).
[Crossref]

Shen, L.

Shorubalko, I.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Stern, L.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Tamchek, N.

D. C. Tee, Y. G. Shee, N. Tamchek, and F. R. M. Adikan, “Structure tuned, high transmission 180° waveguide bend in 2D planar photonic crystal,” IEEE Photon. Technol. Lett. 25(15), 1443–1446 (2013).
[Crossref]

D. C. Tee, T. Kambayashi, S. R. Sandoghchi, N. Tamchek, and F. R. M. Adikan, “Efficient, wide angle, structure tuned 1×3 photonic crystal power splitter at 1550 nm for triple play applications,” J. Lightwave Technol. 30(17), 2818–2823 (2012).
[Crossref]

Tang, L.

Tasolamprou, A. C.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

Tee, D. C.

D. C. Tee, Y. G. Shee, N. Tamchek, and F. R. M. Adikan, “Structure tuned, high transmission 180° waveguide bend in 2D planar photonic crystal,” IEEE Photon. Technol. Lett. 25(15), 1443–1446 (2013).
[Crossref]

D. C. Tee, T. Kambayashi, S. R. Sandoghchi, N. Tamchek, and F. R. M. Adikan, “Efficient, wide angle, structure tuned 1×3 photonic crystal power splitter at 1550 nm for triple play applications,” J. Lightwave Technol. 30(17), 2818–2823 (2012).
[Crossref]

Thompson, B.

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Thorhauge, M.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Wang, Y. F.

X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
[Crossref]

Wang, Z.

Wiaux, V.

Wilson, R.

R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, “Efficient photonic crystal Y-junctions,” J. Opt. A, Pure Appl. Opt. 5(4), S76–S80 (2003).
[Crossref]

Wouters, J.

Yoshie, T.

Zhang, M.

Zhang, X.

Zhang, Y.

Zheng, X.

Zhuang, Y. X.

Zografopoulos, D. C.

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, “Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator,” Opt. Express 15(4), 1832–1844 (2007).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

I. Andonegui, I. Calvo, and A. J. Garcia-Adeva, “Inversedesign and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits,” Appl. Phys., A Mater. Sci. Process. 115, 1–6 (2013).

Chin. Phys. Lett. (1)

X. Y. Chen, H. Li, Y. S. Qiu, Y. F. Wang, and B. Ni, “Tunable photonic crystal mach-zehnder interferometer based on self-collimation effect,” Chin. Phys. Lett. 25(12), 4307–4310 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. C. Tee, Y. G. Shee, N. Tamchek, and F. R. M. Adikan, “Structure tuned, high transmission 180° waveguide bend in 2D planar photonic crystal,” IEEE Photon. Technol. Lett. 25(15), 1443–1446 (2013).
[Crossref]

L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22(13), 966–968 (2010).
[Crossref]

J. Appl. Sci. (1)

N. Nozhat and N. Granpayeh, “Analysis and simulation of a photonic crystal power divider,” J. Appl. Sci. 7, 3576–3579 (2007).
[Crossref]

J. Eur. Opt. Soc. Rapid (1)

A. C. Tasolamprou, B. Bellini, D. C. Zografopoulos, E. E. Kriezis, and R. Beccherelli, “Tunable optical properties of silicon-on-insulator photonic crystal slab structures,” J. Eur. Opt. Soc. Rapid 4, 090017 (2009).

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

R. Wilson, T. J. Karle, I. Moerman, and T. F. Krauss, “Efficient photonic crystal Y-junctions,” J. Opt. A, Pure Appl. Opt. 5(4), S76–S80 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

Nanotechnology (1)

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G. L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Opt. Appl. (1)

S. Foghani, H. Kaatuzian, and M. Danaie, “Simulation and design of a wideband T-shaped photonic crystal splitter,” Opt. Appl. 40, 863–872 (2010).

Opt. Express (4)

Opt. Lett. (4)

Phys. Lett. A (1)

C. Y. Liu, “Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers,” Phys. Lett. A 375(28-29), 2754–2758 (2011).
[Crossref]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Ananth, L. Stern, D. Ferranti, C. Huynh, J. Notte, L. Scipioni, C. Sanford, and B. Thompson, “Creating nanohole arrays with the helium ion microscope,” Proc. SPIE 8036, 80360M (2011).
[Crossref]

Other (5)

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

K. Kurokawa, An Introduction to the Theory of Microwave Circuits (Elsevier, 1969).

S. G. Johnson and J. D. Joannopoulos, “MIT Photonic-Bands package,” The MIT Photonic-Bands Package Home Page, http://ab-initio.mit.edu/mpb/ (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Diagram of the proposed cascaded 1 × 3 power splitter based on an asymmetric 1 × 2 power splitter and a symmetric 1 × 2 power splitter. Percentage on each output branch indicates the desired power splitting ratio.
Fig. 2
Fig. 2 Schematic drawing of the conventional unmodified 1 × 2 power splitter. Magnified box shows the modified power splitter with single Drop Hole structural defect at the splitting region. Light is excited at the location indicated by “Input” and the transmissions are measured at locations indicated by P1 and P2.
Fig. 3
Fig. 3 Design layout of the proposed flexible structural defect (Drop Hole) with three main defect parameters of r1, L and θ.
Fig. 4
Fig. 4 Steady-state magnetic field (Hy) distribution of the conventional unmodified 1 × 2 power splitter at 1550 nm wavelength. Black solid-line indicates the input excitation location.
Fig. 5
Fig. 5 Normalized output transmission and losses (in percentage, %) versus DH radius, r1 at DH length, L = 2.0Λ and 1550 nm wavelength.
Fig. 6
Fig. 6 Normalized output transmission and losses (in percentage, %) versus DH length, L, at DH radius, r1 = 0.325r and 1550 nm wavelength.
Fig. 7
Fig. 7 (a) Steady-state magnetic field (Hy) distribution of the modified 1 × 2 power splitter at optimum DH parameters of L = 2.0Λ and r1 = 0.325r, and at 1550 nm wavelength. (b) Amplitude of the power at dashed-lines indicated as “i” (before interact with DH defect), “ii” (contact with DH defect) and “iii” (interacting with DH defect) in (a). The power amplitude is only plotted along the red dashed-line.
Fig. 8
Fig. 8 Normalized output transmission and reflection power for conventional unmodified and modified 1 × 2 power splitters at optical C-band wavelengths.
Fig. 9
Fig. 9 Normalized output transmission and losses versus Xdown, (b) at L = 2.0Λ and r1 = 0.325r. Insets show the layout and magnetic field distribution at Xdown = 0.2b (a) and Xdown = 0.4b (b) at the splitting region of the proposed asymmetric 1 × 2 power splitter. Horizontal black solid-line in the insets indicates the center of the splitting region is for illustration purpose only.
Fig. 10
Fig. 10 Normalized output transmission and losses versus DH length, L, at Xdown = 0.2b and r1 = 0.325r at 1550 nm wavelength.
Fig. 11
Fig. 11 Normalized output transmission and losses versus DH radius, r1, at Xdown = 0.2b and L = 1.95Λ at 1550 nm wavelength. Insets show the layout and magnetic field (Hy) distribution at r1 = 0.3r (a) and r1 = 0.6r (b). Blue solid-line indicates the slope of the index difference interface between the DH defect and the surrounding high index silicon material.
Fig. 12
Fig. 12 Tolerance analysis of DH length, L, at r1 = 0.33r and Xdown = 0.2b at 1550 nm wavelength.
Fig. 13
Fig. 13 Normalized output transmission and losses over optical C-band wavelengths at optimum DH parameters of L = 1.95Λ, r1 = 0.33r and Xdown = 0.2b.
Fig. 14
Fig. 14 Steady-state magnetic field (Hy) distribution of the modified asymmetric power distribution 1 × 2 power splitter at 1550 nm wavelength, L = 1.95Λ, Xdown = 0.2b and r1 = 0.33r. Magnified box shows the position of the DH defect when it is shifted 0.2b downwards. The horizontal solid-line in the magnified box indicates the center of the splitter structure.
Fig. 15
Fig. 15 Steady-state magnetic field (Hy) distribution for the cascaded 1 × 3 power splitter with three DH defects (DH1-3) at 1550 nm wavelength. Red dashed-line used to indicate the asymmetric and symmetric 1 × 2 power splitters in the design is for illustration purposes only.
Fig. 16
Fig. 16 Normalized output transmission and losses over optical C-band wavelengths for cascaded 1 × 3 power splitter with three DH defects (DH1-3). Vertical lines indicate equal power splitting at 1550 nm and 1561 nm are for illustration purposes only.

Metrics