Abstract

A simple beam-scanning optical design based on Lissajous trajectory imaging is described for achieving up to kHz frame-rate optical imaging on multiple simultaneous data acquisition channels. In brief, two fast-scan resonant mirrors direct the optical beam on a circuitous trajectory through the field of view, with the trajectory repeat-time given by the least common multiplier of the mirror periods. Dicing the raw time-domain data into sub-trajectories combined with model-based image reconstruction (MBIR) 3D in-painting algorithms allows for effective frame-rates much higher than the repeat time of the Lissajous trajectory. Since sub-trajectory and full-trajectory imaging are simply different methods of analyzing the same data, both high-frame rate images with relatively low resolution and low frame rate images with high resolution are simultaneously acquired. The optical hardware required to perform Lissajous imaging represents only a minor modification to established beam-scanning hardware, combined with additional control and data acquisition electronics. Preliminary studies based on laser transmittance imaging and polarization-dependent second harmonic generation microscopy support the viability of the approach both for detection of subtle changes in large signals and for trace-light detection of transient fluctuations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second

S. Choi, P. Kim, R. Boutilier, M. Y. Kim, Y. J. Lee, and H. Lee
Opt. Express 21(20) 23611-23618 (2013)

Continuous focal translation enhances rate of point-scan volumetric microscopy

Courtney Johnson, Jack Exell, Jonathon Kuo, and Kevin Welsher
Opt. Express 27(25) 36241-36258 (2019)

Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz

Karsten Bahlmann, Peter T. C. So, Michael Kirber, Robert Reich, Bernard Kosicki, William McGonagle, and Karl Bellve
Opt. Express 15(17) 10991-10998 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Demuro and I. Parker, “Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging,” Cell Calcium 43(4), 367–374 (2008).
    [Crossref] [PubMed]
  2. T. Horio and T. Suzuki, “Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s,” Rev. Sci. Instrum. 80(1), 013706 (2009).
    [Crossref] [PubMed]
  3. H. R. Petty, “Applications of high speed microscopy in biomedical research,” Opt. Photonics News 15, 40–45 (2004).
  4. D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
    [Crossref]
  5. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [Crossref] [PubMed]
  6. R. Tomer, K. Khairy, and P. J. Keller, “Light sheet microscopy in cell biology,” Methods Mol. Biol. 931, 123–137 (2012).
    [Crossref] [PubMed]
  7. R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60(2), 268–280 (2013).
    [Crossref] [PubMed]
  8. K. Jacobson, “Fluorescence recovery after photobleaching: lateral mobility of lipids and proteins in model membranes and on single cell surfaces,” NATO Adv. Study Inst. Ser. A. A34, 271–288 (1980).
  9. D. W. Piston, M. S. Kirby, H. Cheng, W. J. Lederer, and W. W. Webb, “Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity,” Appl. Opt. 33(4), 662–669 (1994).
    [Crossref] [PubMed]
  10. Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
    [Crossref]
  11. W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
    [Crossref] [PubMed]
  12. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [Crossref] [PubMed]
  13. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
    [Crossref] [PubMed]
  14. D. J. Kissick, D. Wanapun, and G. J. Simpson, “Second-order nonlinear optical imaging of chiral crystals,” Annu Rev Anal Chem (Palo Alto Calif) 4(1), 419–437 (2011).
    [Crossref] [PubMed]
  15. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
    [Crossref] [PubMed]
  16. C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. 50(16), 2376–2382 (2011).
    [Crossref] [PubMed]
  17. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  18. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
    [Crossref] [PubMed]
  19. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [Crossref] [PubMed]
  20. T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
    [Crossref] [PubMed]
  21. A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
    [Crossref] [PubMed]
  22. M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 417–424.
  23. C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
    [Crossref] [PubMed]
  24. X. Li, “Patch-based image interpolation: algorithms and applications,” in International Workshop on Local and Non-Local Approximation in Image Processing, 2008)
  25. J. Mairal, M. Elad, and G. Sapiro, “Sparse learned representations for image restoration,” in Proc. of the 4th World Conf. of the Int. Assoc. for Statistical Computing (IASC), 2008)
  26. M. Aharon, M. Elad, and A. Bruckstein, “An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54(11), 4311–4322 (2006).
    [Crossref]
  27. C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2(3), 296–310 (1993).
    [Crossref] [PubMed]
  28. W. H. Pun and B. D. Jeffs, “Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration,” in Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers., (IEEE, 1995), 1472–1476.
  29. D. Garcia, “Robust smoothing of gridded data in one and higher dimensions with missing values,” Comput. Stat. Data Anal. 54(4), 1167–1178 (2010).
    [Crossref] [PubMed]
  30. G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
    [Crossref]
  31. D. J. Kissick, R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Real-time dynamic range and signal to noise enhancement in beam-scanning microscopy by integration of sensor characteristics, data acquisition hardware, and statistical methods,” in Proc. Soc. Photo. Opt. Instrum. Eng. (2013), 86570.
  32. D. J. Kissick, R. D. Muir, and G. J. Simpson, “Statistical Treatment of Photon/Electron Counting: Extending the Linear Dynamic Range from the Dark Count Rate to Saturation,” Anal. Chem. 82(24), 10129–10134 (2010).
    [Crossref] [PubMed]
  33. R. D. Muir, D. J. Kissick, and G. J. Simpson, “Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy,” Opt. Express 20(9), 10406–10415 (2012).
    [Crossref] [PubMed]
  34. R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy,” Rev. Sci. Instrum. 85(3), 033703 (2014).
    [Crossref] [PubMed]

2014 (1)

R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy,” Rev. Sci. Instrum. 85(3), 033703 (2014).
[Crossref] [PubMed]

2013 (2)

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60(2), 268–280 (2013).
[Crossref] [PubMed]

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

2012 (6)

R. Tomer, K. Khairy, and P. J. Keller, “Light sheet microscopy in cell biology,” Methods Mol. Biol. 931, 123–137 (2012).
[Crossref] [PubMed]

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

R. D. Muir, D. J. Kissick, and G. J. Simpson, “Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy,” Opt. Express 20(9), 10406–10415 (2012).
[Crossref] [PubMed]

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref] [PubMed]

G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
[Crossref]

2011 (2)

D. J. Kissick, D. Wanapun, and G. J. Simpson, “Second-order nonlinear optical imaging of chiral crystals,” Annu Rev Anal Chem (Palo Alto Calif) 4(1), 419–437 (2011).
[Crossref] [PubMed]

C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. 50(16), 2376–2382 (2011).
[Crossref] [PubMed]

2010 (2)

D. J. Kissick, R. D. Muir, and G. J. Simpson, “Statistical Treatment of Photon/Electron Counting: Extending the Linear Dynamic Range from the Dark Count Rate to Saturation,” Anal. Chem. 82(24), 10129–10134 (2010).
[Crossref] [PubMed]

D. Garcia, “Robust smoothing of gridded data in one and higher dimensions with missing values,” Comput. Stat. Data Anal. 54(4), 1167–1178 (2010).
[Crossref] [PubMed]

2009 (1)

T. Horio and T. Suzuki, “Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s,” Rev. Sci. Instrum. 80(1), 013706 (2009).
[Crossref] [PubMed]

2008 (2)

A. Demuro and I. Parker, “Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging,” Cell Calcium 43(4), 367–374 (2008).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

2006 (2)

M. Aharon, M. Elad, and A. Bruckstein, “An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54(11), 4311–4322 (2006).
[Crossref]

Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (2)

H. R. Petty, “Applications of high speed microscopy in biomedical research,” Opt. Photonics News 15, 40–45 (2004).

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

2003 (1)

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

2002 (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

2001 (1)

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
[Crossref] [PubMed]

1994 (1)

1993 (1)

C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2(3), 296–310 (1993).
[Crossref] [PubMed]

1980 (1)

K. Jacobson, “Fluorescence recovery after photobleaching: lateral mobility of lipids and proteins in model membranes and on single cell surfaces,” NATO Adv. Study Inst. Ser. A. A34, 271–288 (1980).

Aharon, M.

M. Aharon, M. Elad, and A. Bruckstein, “An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54(11), 4311–4322 (2006).
[Crossref]

Anderson, E. P.

Au, J.

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

Ballester, C.

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
[Crossref] [PubMed]

Bazaei, A.

A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref] [PubMed]

Beaucage, K.

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

Ben-Yakar, A.

Bertalmio, M.

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
[Crossref] [PubMed]

Both, M.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Bouman, C.

C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2(3), 296–310 (1993).
[Crossref] [PubMed]

Bruckstein, A.

M. Aharon, M. Elad, and A. Bruckstein, “An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54(11), 4311–4322 (2006).
[Crossref]

Campagnola, P. J.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Caselles, V.

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
[Crossref] [PubMed]

Cheng, H.

Cheng, J. X.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

de Jeu, R.

G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
[Crossref]

Demuro, A.

A. Demuro and I. Parker, “Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging,” Cell Calcium 43(4), 367–374 (2008).
[Crossref] [PubMed]

Dixon, S. J.

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

Durr, N. J.

Elad, M.

M. Aharon, M. Elad, and A. Bruckstein, “An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54(11), 4311–4322 (2006).
[Crossref]

J. Mairal, M. Elad, and G. Sapiro, “Sparse learned representations for image restoration,” in Proc. of the 4th World Conf. of the Int. Assoc. for Statistical Computing (IASC), 2008)

Engelbrecht, C. J.

Falk, R.

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60(2), 268–280 (2013).
[Crossref] [PubMed]

Fink, R. H. A.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

Friedrich, O.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Fu, Y.

Garcia, D.

G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
[Crossref]

D. Garcia, “Robust smoothing of gridded data in one and higher dimensions with missing values,” Comput. Stat. Data Anal. 54(4), 1167–1178 (2010).
[Crossref] [PubMed]

Helmchen, F.

Holdsworth, D. W.

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Horio, T.

T. Horio and T. Suzuki, “Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s,” Rev. Sci. Instrum. 80(1), 013706 (2009).
[Crossref] [PubMed]

Hoy, C. L.

Jacobson, K.

K. Jacobson, “Fluorescence recovery after photobleaching: lateral mobility of lipids and proteins in model membranes and on single cell surfaces,” NATO Adv. Study Inst. Ser. A. A34, 271–288 (1980).

Jeffs, B. D.

W. H. Pun and B. D. Jeffs, “Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration,” in Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers., (IEEE, 1995), 1472–1476.

Jeong, Y.

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Johannes Dolman, A.

G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
[Crossref]

Johnston, R. S.

Jung, J. C.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Kartik, V.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Keller, P. J.

R. Tomer, K. Khairy, and P. J. Keller, “Light sheet microscopy in cell biology,” Methods Mol. Biol. 931, 123–137 (2012).
[Crossref] [PubMed]

Khairy, K.

R. Tomer, K. Khairy, and P. J. Keller, “Light sheet microscopy in cell biology,” Methods Mol. Biol. 931, 123–137 (2012).
[Crossref] [PubMed]

Kim, D.-H.

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Kirby, M. S.

Kishimoto, J.

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

Kissick, D. J.

R. D. Muir, D. J. Kissick, and G. J. Simpson, “Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy,” Opt. Express 20(9), 10406–10415 (2012).
[Crossref] [PubMed]

D. J. Kissick, D. Wanapun, and G. J. Simpson, “Second-order nonlinear optical imaging of chiral crystals,” Annu Rev Anal Chem (Palo Alto Calif) 4(1), 419–437 (2011).
[Crossref] [PubMed]

D. J. Kissick, R. D. Muir, and G. J. Simpson, “Statistical Treatment of Photon/Electron Counting: Extending the Linear Dynamic Range from the Dark Count Rate to Saturation,” Anal. Chem. 82(24), 10129–10134 (2010).
[Crossref] [PubMed]

Künsting, T.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Kwon, J.-D.

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Kwon, S.-H.

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Lederer, W. J.

Lee, Y.-J.

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Li, X.

X. Li, “Patch-based image interpolation: algorithms and applications,” in International Workshop on Local and Non-Local Approximation in Image Processing, 2008)

Liu, Y.

G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
[Crossref]

Lygeros, J.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Mairal, J.

J. Mairal, M. Elad, and G. Sapiro, “Sparse learned representations for image restoration,” in Proc. of the 4th World Conf. of the Int. Assoc. for Statistical Computing (IASC), 2008)

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Millard, A. C.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Moheimani, S. O. R.

A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref] [PubMed]

Mohler, W.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Muir, R. D.

R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy,” Rev. Sci. Instrum. 85(3), 033703 (2014).
[Crossref] [PubMed]

R. D. Muir, D. J. Kissick, and G. J. Simpson, “Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy,” Opt. Express 20(9), 10406–10415 (2012).
[Crossref] [PubMed]

D. J. Kissick, R. D. Muir, and G. J. Simpson, “Statistical Treatment of Photon/Electron Counting: Extending the Linear Dynamic Range from the Dark Count Rate to Saturation,” Anal. Chem. 82(24), 10129–10134 (2010).
[Crossref] [PubMed]

Nam, K.-S.

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Nikolov, H. N.

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

Oglesbee, R. A.

R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy,” Rev. Sci. Instrum. 85(3), 033703 (2014).
[Crossref] [PubMed]

Oron, D.

Pantazi, A.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Park, S.-G.

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Parker, I.

A. Demuro and I. Parker, “Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging,” Cell Calcium 43(4), 367–374 (2008).
[Crossref] [PubMed]

Pashaie, R.

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60(2), 268–280 (2013).
[Crossref] [PubMed]

Petty, H. R.

H. R. Petty, “Applications of high speed microscopy in biomedical research,” Opt. Photonics News 15, 40–45 (2004).

Piston, D. W.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Pun, W. H.

W. H. Pun and B. D. Jeffs, “Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration,” in Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers., (IEEE, 1995), 1472–1476.

Sapiro, G.

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
[Crossref] [PubMed]

J. Mairal, M. Elad, and G. Sapiro, “Sparse learned representations for image restoration,” in Proc. of the 4th World Conf. of the Int. Assoc. for Statistical Computing (IASC), 2008)

Sauer, K.

C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2(3), 296–310 (1993).
[Crossref] [PubMed]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

Sebastian, A.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Seibel, E. J.

Shi, R.

Silberberg, Y.

Simpson, G. J.

R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy,” Rev. Sci. Instrum. 85(3), 033703 (2014).
[Crossref] [PubMed]

R. D. Muir, D. J. Kissick, and G. J. Simpson, “Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy,” Opt. Express 20(9), 10406–10415 (2012).
[Crossref] [PubMed]

D. J. Kissick, D. Wanapun, and G. J. Simpson, “Second-order nonlinear optical imaging of chiral crystals,” Annu Rev Anal Chem (Palo Alto Calif) 4(1), 419–437 (2011).
[Crossref] [PubMed]

D. J. Kissick, R. D. Muir, and G. J. Simpson, “Statistical Treatment of Photon/Electron Counting: Extending the Linear Dynamic Range from the Dark Count Rate to Saturation,” Anal. Chem. 82(24), 10129–10134 (2010).
[Crossref] [PubMed]

Sullivan, S. Z.

R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy,” Rev. Sci. Instrum. 85(3), 033703 (2014).
[Crossref] [PubMed]

Suzuki, T.

T. Horio and T. Suzuki, “Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s,” Rev. Sci. Instrum. 80(1), 013706 (2009).
[Crossref] [PubMed]

Tal, E.

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Tomer, R.

R. Tomer, K. Khairy, and P. J. Keller, “Light sheet microscopy in cell biology,” Methods Mol. Biol. 931, 123–137 (2012).
[Crossref] [PubMed]

Tuma, T.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Uttenweiler, D.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Verdera, J.

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
[Crossref] [PubMed]

Vogel, M.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

von Wegner, F.

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Wanapun, D.

D. J. Kissick, D. Wanapun, and G. J. Simpson, “Second-order nonlinear optical imaging of chiral crystals,” Annu Rev Anal Chem (Palo Alto Calif) 4(1), 419–437 (2011).
[Crossref] [PubMed]

Wang, G.

G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
[Crossref]

Wang, H.

Webb, W. W.

Yong, Y. K.

A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

D. J. Kissick, R. D. Muir, and G. J. Simpson, “Statistical Treatment of Photon/Electron Counting: Extending the Linear Dynamic Range from the Dark Count Rate to Saturation,” Anal. Chem. 82(24), 10129–10134 (2010).
[Crossref] [PubMed]

Annu Rev Anal Chem (Palo Alto Calif) (1)

D. J. Kissick, D. Wanapun, and G. J. Simpson, “Second-order nonlinear optical imaging of chiral crystals,” Annu Rev Anal Chem (Palo Alto Calif) 4(1), 419–437 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Biophys. J. (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[Crossref] [PubMed]

Cell Calcium (1)

A. Demuro and I. Parker, “Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging,” Cell Calcium 43(4), 367–374 (2008).
[Crossref] [PubMed]

Comput. Stat. Data Anal. (1)

D. Garcia, “Robust smoothing of gridded data in one and higher dimensions with missing values,” Comput. Stat. Data Anal. 54(4), 1167–1178 (2010).
[Crossref] [PubMed]

Environ. Model. Softw. (1)

G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. Johannes Dolman, “A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations,” Environ. Model. Softw. 30, 139–142 (2012).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. 60(2), 268–280 (2013).
[Crossref] [PubMed]

IEEE Trans. Image Process. (2)

C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, “Filling-in by joint interpolation of vector fields and gray levels,” IEEE Trans. Image Process. 10(8), 1200–1211 (2001).
[Crossref] [PubMed]

C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Process. 2(3), 296–310 (1993).
[Crossref] [PubMed]

IEEE Trans. Signal Process. (1)

M. Aharon, M. Elad, and A. Bruckstein, “An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54(11), 4311–4322 (2006).
[Crossref]

J. Biomed. Opt. (1)

M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004).
[Crossref] [PubMed]

Methods (1)

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic generation imaging of endogenous structural proteins,” Methods 29(1), 97–109 (2003).
[Crossref] [PubMed]

Methods Mol. Biol. (1)

R. Tomer, K. Khairy, and P. J. Keller, “Light sheet microscopy in cell biology,” Methods Mol. Biol. 931, 123–137 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

NATO Adv. Study Inst. Ser. A. (1)

K. Jacobson, “Fluorescence recovery after photobleaching: lateral mobility of lipids and proteins in model membranes and on single cell surfaces,” NATO Adv. Study Inst. Ser. A. A34, 271–288 (1980).

Opt. Express (4)

Opt. Lett. (1)

Opt. Photonics News (1)

H. R. Petty, “Applications of high speed microscopy in biomedical research,” Opt. Photonics News 15, 40–45 (2004).

Proc. SPIE (1)

D. W. Holdsworth, H. N. Nikolov, J. Au, K. Beaucage, J. Kishimoto, and S. J. Dixon, “Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells,” Proc. SPIE 8317, 831715 (2012).
[Crossref]

Rev. Sci. Instrum. (3)

T. Horio and T. Suzuki, “Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s,” Rev. Sci. Instrum. 80(1), 013706 (2009).
[Crossref] [PubMed]

R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy,” Rev. Sci. Instrum. 85(3), 033703 (2014).
[Crossref] [PubMed]

A. Bazaei, Y. K. Yong, and S. O. R. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref] [PubMed]

Thin Solid Films (1)

Y.-J. Lee, J.-D. Kwon, D.-H. Kim, K.-S. Nam, Y. Jeong, S.-H. Kwon, and S.-G. Park, “Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films,” Thin Solid Films 542, 388–392 (2013).
[Crossref]

Other (5)

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co., 2000), pp. 417–424.

W. H. Pun and B. D. Jeffs, “Shape parameter estimation for generalized Gaussian Markov random field models used in MAP image restoration,” in Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers., (IEEE, 1995), 1472–1476.

X. Li, “Patch-based image interpolation: algorithms and applications,” in International Workshop on Local and Non-Local Approximation in Image Processing, 2008)

J. Mairal, M. Elad, and G. Sapiro, “Sparse learned representations for image restoration,” in Proc. of the 4th World Conf. of the Int. Assoc. for Statistical Computing (IASC), 2008)

D. J. Kissick, R. D. Muir, S. Z. Sullivan, R. A. Oglesbee, and G. J. Simpson, “Real-time dynamic range and signal to noise enhancement in beam-scanning microscopy by integration of sensor characteristics, data acquisition hardware, and statistical methods,” in Proc. Soc. Photo. Opt. Instrum. Eng. (2013), 86570.

Supplementary Material (5)

» Media 1: AVI (3845 KB)     
» Media 2: MP4 (3675 KB)     
» Media 3: AVI (5702 KB)     
» Media 4: AVI (5638 KB)     
» Media 5: AVI (5702 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A) Example Lissajous trajectory for 7:8 pattern with equal amplitude. Starting point is 0,0, when the trajectory returns to 0,0 the pattern repeats. B) Pixel sampling density map of 7.083:8 Lissajous trajectory used in imaging. C) Plots of % fill rate vs. frame-rate for the 5300:5986 Lissajous trajectory generating a 512 × 512 pixel image. Higher frame-rates come with the tradeoff of fill rate and/or spatial binning resolution.
Fig. 2
Fig. 2 Timing diagraming for the prototype Lissajous microscope. An 80MHz Ti:Sapphire laser was used as master clock for the ATS 9462 digitizing cards, which in turn generated a 10MHz PLL to synchronize the Lissajous Timing Generator (LTG), which drove the resonant mirror(s) with active phase control. The LTG supplied an epoch pulse to trigger the start of data acquisition.
Fig. 3
Fig. 3 USAF 1951 Resolution Chart. A) High resolution Lissajous microscope image (25 Hz Imaging) of test chart without translation. B) During rapid sample translation, significant blurring occurs. Media 2. C) Example of blurring with traditional raster imaging (15 Hz). D) Data rebinned into sub-trajectories at 100Hz to increase frame rate and reduce blurring with the resultant unsampled pixels. E) Inpainted results of D. F) Data rebinned into sub-trajectories to give 1.25 KHz imaging and the resultant unsampled pixels. G) Inpainted results of F (Media 2).
Fig. 4
Fig. 4 Urea Crystals imaged on three different detectors with the incident optical polarization modulated at the Lissajous Period. Columns B and C corresponds to H and V SHG, and column A corresponds to laser transmittance. The first row demonstrates imaging at the 5Hz Lissajous period, the second and third rows demonstrate a sub-trajectory with a 1.460 KHz frame rates and in in-painted results (Media 3, Media 4, Media 5). While the base image in the first row can only show the average intensity across the modulation period, the 292 × increased temporal resolution is able to show the intensity of the various crystal domains at specific time slices.
Fig. 5
Fig. 5 Selected frames of the movie (supplemental information) corresponding image in the last row of Fig. 3 column (A). The enhanced 250 Hz temporal resolution is able to show the intensity evolution of the various crystal domains.
Fig. 6
Fig. 6 Movie of “Marco” with toy (A) as a surrogate movie for inpainting interpolation fidelity assessment. After superimposing the same unsampled pixel pattern (B) as in row 2 of Fig. 3, the resulting interpolation is demonstrated in C. For pixels that take on integer grayscale values between 0 and 255, the interpolated pixels had an average error of 3.4 grayscale units ( ± 1.5% standard deviation) relative to the ground truth as displayed in the difference map (D), where gray corresponds to correct values and white and black correspond to over and underestimated vales, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = i ^ A x sin ( 2 π t τ x + δ x ) + j ^ A y sin ( 2 π t τ y + δ y )
p ( x | y ) = p ( y | x ) p ( x ) p ( y )
c ( x ) = y A x 2 2 σ W 2 + { i , i } C q i , j | x i x j | p p σ x p + t T r t | x x ( t ) | p p σ t p
x ^ = arg min x 0 { c ( x ) }

Metrics