Abstract

The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of tunable negative index metamaterials based on phase-change materials

Tun Cao, Robert E. Simpson, and Martin J. Cryan
J. Opt. Soc. Am. B 30(2) 439-444 (2013)

3-D integrated heterogeneous intra-chip free-space optical interconnect

Berkehan Ciftcioglu, Rebecca Berman, Shang Wang, Jianyun Hu, Ioannis Savidis, Manish Jain, Duncan Moore, Michael Huang, Eby G. Friedman, Gary Wicks, and Hui Wu
Opt. Express 20(4) 4331-4345 (2012)

Proposal of a Grating-Based Optical Reflection Switch using Phase Change Materials

Xiaomin Wang, Masashi Kuwahara, Koichi Awazu, Paul Fons, Junji Tominaga, and Yoshimichi Ohki
Opt. Express 17(19) 16947-16956 (2009)

References

  • View by:
  • |
  • |
  • |

  1. F. Jedema, “Phase-change materials: Designing optical media of the future,” Nat. Mater. 6, 90–91 (2008).
    [Crossref]
  2. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2 Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
    [Crossref]
  3. T. Cao, C. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Rapid phase transition of a phase-change metamaterial perfect absorber,” Opt. Mater. Express 3, 1101–1110 (2013).
    [Crossref]
  4. X. Wang, M. Kuwahara, K. Awazu, P. Fons, J. Tominaga, and Y. Ohki, “Proposal of a grating-based opticalreflection switch using phase changematerials,” Opt. Express 17, 16947–16956 (2009).
    [Crossref] [PubMed]
  5. T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21, 27841–27851 (2013).
    [Crossref]
  6. Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21, 13691–13698 (2013).
    [Crossref] [PubMed]
  7. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [Crossref]
  8. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref] [PubMed]
  9. L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
    [Crossref] [PubMed]
  10. A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
    [Crossref] [PubMed]
  11. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
    [Crossref] [PubMed]
  12. Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).
  13. L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
    [Crossref]
  14. D. Miller, “Optical interconnects to silicon,” IEEE J. Quantum Electron. 6, 1312–1317 (2000).
    [Crossref]
  15. C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
    [Crossref]
  16. B. Ciftcioglu, R. Berman, S. Wang, J. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express 20, 4331–4345 (2012).
    [Crossref] [PubMed]
  17. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  18. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
    [Crossref] [PubMed]
  19. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  20. J. Huang and J. Encinar, Refelc tarray Antennas (Wiley-IEEE Press, 2007).
    [Crossref]
  21. J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
    [Crossref]
  22. T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Experimental demonstration of reflectarray antennas at terahertz frequencies,” Opt. Express 21, 2875–2889 (2013).
    [Crossref] [PubMed]

2014 (4)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

2013 (7)

2012 (2)

B. Ciftcioglu, R. Berman, S. Wang, J. Hu, I. Savidis, M. Jain, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “3-D integrated heterogeneous intra-chip free-space optical interconnect,” Opt. Express 20, 4331–4345 (2012).
[Crossref] [PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

2009 (1)

2008 (2)

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

F. Jedema, “Phase-change materials: Designing optical media of the future,” Nat. Mater. 6, 90–91 (2008).
[Crossref]

2003 (1)

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

2001 (1)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2 Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

2000 (1)

D. Miller, “Optical interconnects to silicon,” IEEE J. Quantum Electron. 6, 1312–1317 (2000).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Albrektsen, O.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Awazu, K.

Baukens, V.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Beneš, L.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

Berman, R.

Bhaskaran, M.

Boag, A.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

Bozhevolnyi, S. I.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Brunfaut, M.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Cao, T.

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Chen, Y. G.

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Ciftcioglu, B.

Cryan, M. J.

Debaes, C.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Eitan, M.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Encinar, J.

J. Huang and J. Encinar, Refelc tarray Antennas (Wiley-IEEE Press, 2007).
[Crossref]

Fons, P.

Friedman, E. G.

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2 Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Frumar, M.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

Fumeaux, C.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Hanein, Y.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

Hermanne, A.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Hong, M. H.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Hu, J.

Huang, J.

J. Huang and J. Encinar, Refelc tarray Antennas (Wiley-IEEE Press, 2007).
[Crossref]

Huang, M.

Iluz, Z.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

Jain, M.

Jedema, F.

F. Jedema, “Phase-change materials: Designing optical media of the future,” Nat. Mater. 6, 90–91 (2008).
[Crossref]

Kao, T. S.

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Klemm, M.

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Kuwahara, M.

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Li, X.

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

Luo, X. G.

Maier, S. A.

Meeus, W.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Menekse, H.

Miller, D.

D. Miller, “Optical interconnects to silicon,” IEEE J. Quantum Electron. 6, 1312–1317 (2000).
[Crossref]

Mitchell, A.

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
[Crossref]

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Moore, D.

Ng, B.

Niu, T.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Ohki, Y.

Orava, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

Ottevaere, H.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Pors, A.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Prikryl, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

Radko, I. P.

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Savidis, I.

Scheuer, J.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

Shah, C.

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
[Crossref]

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Šik, J.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

Simpson, R. E.

Sriram, S.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Thienpont, H.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Tominaga, J.

Tuteleers, P.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Ung, B. S.-Y.

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Van Campenhout, J.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Vervaeke, M.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Volckaerts, B.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Vynck, P.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

Wágner, T.

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

Wang, S.

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Wang, X.

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Wei, C.

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2 Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Wicks, G.

Withayachumnankul, W.

Wu, H.

Wuttig, M.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2 Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Yifat, Y.

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zhang, L.

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2 Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

Zou, L.

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
[Crossref]

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

D. Miller, “Optical interconnects to silicon,” IEEE J. Quantum Electron. 6, 1312–1317 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. Van Campenhout, A. Hermanne, and H. Thienpont, “Low-cost microoptical modules for MCM level optical interconnections,” IEEE J. Sel. Top. Quantum Electron. 9, 518–530 (2003).
[Crossref]

IEEE Photon. J. (1)

L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Klemm, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Efficiency and scalability of dielectric resonator antennas at optical frequencies,” IEEE Photon. J. 6, 1–10 (2014).
[Crossref]

J. Appl. Phys. (2)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2 Sb2Te5 films,” J. Appl. Phys. 89, 3168–3176 (2001).
[Crossref]

J. Orava, T. Wágner, J. Šik, J. Přikryl, M. Frumar, and L. Beneš, “Optical properties and phase change transition in Ge2 Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry,” J. Appl. Phys. 104, 1–10 (2008).
[Crossref]

Nano Lett. (2)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref] [PubMed]

Y. Yifat, M. Eitan, Z. Iluz, Y. Hanein, A. Boag, and J. Scheuer, “Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays,” Nano Lett. 142485–2490 (2014).

Nat. Mater. (2)

F. Jedema, “Phase-change materials: Designing optical media of the future,” Nat. Mater. 6, 90–91 (2008).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Mater. Express (1)

Sci. Rep. (1)

A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, “Gap plasmon-based metasurfaces for total control of reflected light,” Sci. Rep. 3, 2155 (2013).
[Crossref] [PubMed]

Science (2)

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Other (1)

J. Huang and J. Encinar, Refelc tarray Antennas (Wiley-IEEE Press, 2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A scenario of the dynamic inter/intra chip free-space optical interconnect. The PCM based tunable reflectarray is able to switch optical link between two receivers, i.e. Source to Receiver 1 and Receiver 2 at crystalline and amorphous state of PCM, respectively. The incident angle can be either −α (a) or α (b), which correspondingly results in the location angle of Receiver 2 of θα or θ+α.
Fig. 2
Fig. 2 Operation principle of the reflectarray. The wavefront of the reflected light is modified to an angle of θ by an array of equally separating space d antenna elements with a constant gradient of phase jump ϕ along the interface.
Fig. 3
Fig. 3 Simulated reflection phase response of two types of antennas with lattice of 500 nm at the wavelength of 1.55μm at the amorphous state of GST. (a) Dielectric loaded antenna with the silver patch size of 150×150 nm. The reflection phase covers the range from 180° to −30°. (b) Patch antenna. The reflection phase covers the range from 10° to −180°. (c) The combination of two types of antennas spans 360°. The two red dots and four blue squares respectively represent selected dielectric sizes A = 273 and 324 nm and silver patch size L = 86, 157, 184 and 250 nm to form 6 antenna elements reflectarray with the corresponding reflection phase of 130°, 70°, 10°, −50°, −110° and −170°, respectively.
Fig. 4
Fig. 4 The sketch of the tunable reflectarray based on Ge2Sb2Te5. Each subarray consists of two dielectric loaded antennas and four patch antennas.
Fig. 5
Fig. 5 The simulated farfield of tunable reflectarray with incident angle α = −10°. (a). The farfield pattern represents the Link 1 between Source and Receiver 1 in Fig. 1(a) when PCM at the crystalline state; (b). The farfield pattern represents the Link 2 between Source and Receiver 2 in Fig. 1(a) when PCM at the amorphous state.
Fig. 6
Fig. 6 The simulated farfield of tunable reflectarray with incident angle α = 10°. (a). The farfield pattern represents the Link 1 between Source and Receiver 1 in Fig. 1(b) when PCM at the crystalline state; (b). The farfield pattern represents the Link between Source and Receiver 2 in Fig. 1(b) when PCM at the amorphous state.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin ( θ ) = ϕ k d

Metrics