Abstract

We study the perception of speckle by human observers in a laser projector based on a 40 persons survey. The speckle contrast is first objectively measured making use of a well-defined speckle measurement method. We statistically analyse the results of the user quality scores, revealing that the speckle perception is not only influenced by the speckle contrast settings of the projector, but it is also strongly influenced by the type of image shown. Based on the survey, we derive a speckle contrast threshold for which speckle can be seen, and separately we investigate a speckle disturbance limit that is tolerated by the majority of test persons.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, 79–98 (2010).
    [Crossref]
  2. J. Hecht, “A short history of laser development,” Appl. Opt. 49, 99–122 (2010).
    [Crossref]
  3. U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID 18, 813–820 (2010).
    [Crossref]
  4. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).
  5. J. C. Dainty, “An introduction to ‘Gaussian’ speckle,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 2–8 (1980).
  6. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
    [Crossref]
  7. M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).
  8. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998).
    [Crossref]
  9. Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
    [Crossref]
  10. S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express 20, 8770–8783 (2012).
    [Crossref] [PubMed]
  11. P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.
  12. ITU, ITURBT, “709-5 Parameter values for the HDTV standards for production and international programme exchange” (2002).
  13. H. Snellen, Probebuchstaben zur Bestimmung der Sehschrfe (Utrecht, 1862).
  14. A. R. Reibman, S. Kanumuri, V. Vaishampayan, and P. C. Cosman, “Visibility of individual packet losses in MPEG-2 video,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Singapore, 2004), pp. 171–174.
  15. B. A. Wandell, Foundations of Vision (Sinauer Associates, 1995).
  16. G. Wyszecki and W. S. Stiles, Concepts and Methods, Quantitative Data and Formulae, Series in Pure and Applied Optics (Wiley, 1982).
  17. B. Pfaff, GNU PSPP (Version 0.8.3) [Software]. Available from http://www.gnu.org/software/pspp/get.html .
  18. D. C. Montgomery, Design and Analysis of Experiments (Wiley, 2008).
  19. P. A. Pappas and V. DePuy, “An overview of non-parametric tests in SAS: when, why, and how,” Paper TU04, Duke Clinical Research Institute, Durham, 1–5 (2004).
  20. W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” J. Am. Stat. Assoc. 47, 583–621 (1952).
    [Crossref]

2012 (1)

2010 (3)

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, 79–98 (2010).
[Crossref]

J. Hecht, “A short history of laser development,” Appl. Opt. 49, 99–122 (2010).
[Crossref]

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID 18, 813–820 (2010).
[Crossref]

2008 (1)

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
[Crossref]

2002 (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

1998 (1)

1980 (1)

J. C. Dainty, “An introduction to ‘Gaussian’ speckle,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 2–8 (1980).

1952 (1)

W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” J. Am. Stat. Assoc. 47, 583–621 (1952).
[Crossref]

Bellancourt, A.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID 18, 813–820 (2010).
[Crossref]

Brennesholtz, M. S.

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

Chellappan, K.

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, 79–98 (2010).
[Crossref]

Cosman, P. C.

A. R. Reibman, S. Kanumuri, V. Vaishampayan, and P. C. Cosman, “Visibility of individual packet losses in MPEG-2 video,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Singapore, 2004), pp. 171–174.

Craggs, G.

Dainty, J. C.

J. C. Dainty, “An introduction to ‘Gaussian’ speckle,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 2–8 (1980).

DePuy, V.

P. A. Pappas and V. DePuy, “An overview of non-parametric tests in SAS: when, why, and how,” Paper TU04, Duke Clinical Research Institute, Durham, 1–5 (2004).

Erden, E.

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, 79–98 (2010).
[Crossref]

Gerets, P.

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

Halldórsson, T.

Hecht, J.

Janssens, P.

S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express 20, 8770–8783 (2012).
[Crossref] [PubMed]

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

Kanumuri, S.

A. R. Reibman, S. Kanumuri, V. Vaishampayan, and P. C. Cosman, “Visibility of individual packet losses in MPEG-2 video,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Singapore, 2004), pp. 171–174.

Kruskal, W. H.

W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” J. Am. Stat. Assoc. 47, 583–621 (1952).
[Crossref]

Lee, D. U.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
[Crossref]

Lee, S. G.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
[Crossref]

Lee, Y. M.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
[Crossref]

Mackens, U.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID 18, 813–820 (2010).
[Crossref]

Maes, D.

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

Meuret, Y.

Moench, H.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID 18, 813–820 (2010).
[Crossref]

Montgomery, D. C.

D. C. Montgomery, Design and Analysis of Experiments (Wiley, 2008).

Pappas, P. A.

P. A. Pappas and V. DePuy, “An overview of non-parametric tests in SAS: when, why, and how,” Paper TU04, Duke Clinical Research Institute, Durham, 1–5 (2004).

Park, J. M.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
[Crossref]

Park, S. Y.

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
[Crossref]

Pétursson, P. R.

Reibman, A. R.

A. R. Reibman, S. Kanumuri, V. Vaishampayan, and P. C. Cosman, “Visibility of individual packet losses in MPEG-2 video,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Singapore, 2004), pp. 171–174.

Roelandt, S.

Snellen, H.

H. Snellen, Probebuchstaben zur Bestimmung der Sehschrfe (Utrecht, 1862).

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Concepts and Methods, Quantitative Data and Formulae, Series in Pure and Applied Optics (Wiley, 1982).

Stupp, E. H.

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

Thienpont, H.

Trisnadi, J. I.

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

Tschudi, T.

Urey, H.

K. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, 79–98 (2010).
[Crossref]

Vaishampayan, V.

A. R. Reibman, S. Kanumuri, V. Vaishampayan, and P. C. Cosman, “Visibility of individual packet losses in MPEG-2 video,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Singapore, 2004), pp. 171–174.

Van den Bergh, G.

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

Van den Bossche, B.

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

Vanden Bulcke, N.

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

Vermeirsch, K.

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

Verschaffelt, G.

Wallis, W. A.

W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” J. Am. Stat. Assoc. 47, 583–621 (1952).
[Crossref]

Wandell, B. A.

B. A. Wandell, Foundations of Vision (Sinauer Associates, 1995).

Wang, L.

Weichmann, U.

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID 18, 813–820 (2010).
[Crossref]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Concepts and Methods, Quantitative Data and Formulae, Series in Pure and Applied Optics (Wiley, 1982).

Appl. Opt. (3)

J. Am. Stat. Assoc. (1)

W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” J. Am. Stat. Assoc. 47, 583–621 (1952).
[Crossref]

JSID (1)

U. Weichmann, A. Bellancourt, U. Mackens, and H. Moench, “Solid-state lasers for projection,” JSID 18, 813–820 (2010).
[Crossref]

Opt. Express (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. C. Dainty, “An introduction to ‘Gaussian’ speckle,” Proc. Soc. Photo-Opt. Instrum. Eng. 243, 2–8 (1980).

Proc. SPIE (1)

J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE 4657, 131–137 (2002).
[Crossref]

SID Symp. Digest (1)

Y. M. Lee, D. U. Lee, J. M. Park, S. Y. Park, and S. G. Lee, “A study on the relationships between human perception and the physical phenomenon of speckle,” SID Symp. Digest 39, 1347–1350 (2008).
[Crossref]

Other (11)

M. S. Brennesholtz and E. H. Stupp, Projection Displays (Wiley, 2008).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

P. Janssens, P. Gerets, D. Maes, N. Vanden Bulcke, G. Van den Bergh, B. Van den Bossche, and K. Vermeirsch, “Fiber-Coupled Laser Cinema Projector,” in Proceedings International Display Workshop 2011 (Nagoy, Japan, 2011), pp. 1885–1888.

ITU, ITURBT, “709-5 Parameter values for the HDTV standards for production and international programme exchange” (2002).

H. Snellen, Probebuchstaben zur Bestimmung der Sehschrfe (Utrecht, 1862).

A. R. Reibman, S. Kanumuri, V. Vaishampayan, and P. C. Cosman, “Visibility of individual packet losses in MPEG-2 video,” in Proceedings of IEEE Conference on Image Processing (Institute of Electrical and Electronics Engineers, Singapore, 2004), pp. 171–174.

B. A. Wandell, Foundations of Vision (Sinauer Associates, 1995).

G. Wyszecki and W. S. Stiles, Concepts and Methods, Quantitative Data and Formulae, Series in Pure and Applied Optics (Wiley, 1982).

B. Pfaff, GNU PSPP (Version 0.8.3) [Software]. Available from http://www.gnu.org/software/pspp/get.html .

D. C. Montgomery, Design and Analysis of Experiments (Wiley, 2008).

P. A. Pappas and V. DePuy, “An overview of non-parametric tests in SAS: when, why, and how,” Paper TU04, Duke Clinical Research Institute, Durham, 1–5 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the setup. The projector is positioned at a distance of 3 m from the screen. The viewers are located at 2.5 m.

Fig. 2
Fig. 2

Images shown when querying for the speckle detection limit, consisting of red, green, blue and white bars, created by the lasers’ primaries.

Fig. 3
Fig. 3

Simulated effect of spatial averaging on the speckle contrast as a function of the square root of the ratio between the pixel area and the speckle size ( A p / A c). Backwards calculation from the measurement setting to the human observer situation results in a speckle contrast increase factor of 1.22.

Fig. 4
Fig. 4

Percentage of people that observe speckle for each of the projector’s primary colors and for white as a function of the laser projector’s speckle contrast. The dashed lines are trend lines of the data sets to show the trend of the different primary colors.

Fig. 5
Fig. 5

A histogram of the speckle MOS score is plotted for all user responses. The blue curve is a normal distribution fit based on the mean MOS score and the MOS standard deviation.

Fig. 6
Fig. 6

Cumulative percentages versus the speckle score (scale defined by Table 1) for different laser projector speckle contrasts (C).

Tables (8)

Tables Icon

Table 2 Speckle contrast measured at each of the laser projector’s speckle settings and for each of the primary colors.

Tables Icon

Table 3 Average MOS values for speckle perception of the laser- and lamp-based projectors for all speckle settings and image types. Y (N) indicates that there is (is not) a statistically significant difference of the answers depending on the value of the parameter specified in each column, respectively.

Tables Icon

Table 4 Analysis of speckle MOS and mean difference in speckle score of the laser projector’s speckle perception and how it depends on the speckle contrast C. N is the total number of observations within each data set.

Tables Icon

Table 5 Comparison between lamp and laser projector based on speckle for different settings of the laser projector’s speckle contrast C. Y indicates differences that are statistically significant.

Tables Icon

Table 1 Table showing the grading of the scores for speckle perception in the questionnaire.

Tables Icon

Table 6 Analysis of speckle MOS and mean difference in speckle score of the laser projector’s speckle perception and how it depends on the type of image shown. N is the total number of observations within each data set.

Tables Icon

Table 7 Analysis of speckle MOS and mean difference in speckle score of the laser projector’s speckle perception and how it depends on color blindness of the observer. N is the total number of observations within each data set.

Tables Icon

Table 8 Analysis of speckle MOS and mean difference in speckle score of the laser projector’s speckle perception for image HC2. N is the total number of observations within each data set.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f pixel averaging > 1 pixel averaging
f ang decorr < 1 angular decorrelation
f ang decorr = Ω correct settings Ω meas settings where Ω = π ( D / 2 ) 2 d 2
= π ( 3.2 / 2 ) 2 ( 2.5 10 3 ) 2 ( 2.5 10 3 ) 2 π ( 4 / 2 ) 2
= 0.8
f = f pixel averaging f ang decorr = 1.22 0.8 = 0.98 .

Metrics