Abstract

Flow effects on the thermal loading in different optofluidic systems (optical trap and various microfluidic channels) have been systematically explored by using dye-based ratiometric luminescence thermometry. Thermal images obtained by fluorescence microscopy demonstrate that the flow rate plays a key role in determining both the magnitude of the laser-induced temperature increment and its spatial distribution. Numerical simulations were performed in the case of the optical trap. A good agreement between the experimental results and those predicted by mathematical modelling was observed. It has also been found that the dynamics of thermal loading is strongly influenced by the presence of fluid flow.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optothermorheological flow manipulation

Mekala Krishnan, Joonsik Park, and David Erickson
Opt. Lett. 34(13) 1976-1978 (2009)

All-optical thermal microscopy of laser-excited waveguides

Ruiyun He, Javier Rodríguez Vázquez de Aldana, Ginés Lifante Pedrola, Feng Chen, and Daniel Jaque
Opt. Lett. 41(9) 2061-2064 (2016)

Gold nanorod assisted intracellular optical manipulation of silica microspheres

P. Haro-González, P. Rodríguez Sevilla, F. Sanz-Rodríguez, E. Martín Rodríguez, Nicoleta Bogdan, J.A. Capobianco, K. Dholakia, and D. Jaque
Opt. Express 22(16) 19735-19747 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  2. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  3. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  4. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [Crossref] [PubMed]
  5. A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  6. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18892–18897 (2007).
    [Crossref] [PubMed]
  7. A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8(7), 1116–1120 (2008).
    [Crossref] [PubMed]
  8. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
    [Crossref] [PubMed]
  9. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
  10. H. Xin, X. Li, and B. Li, “Massive photothermal trapping and migration of particles by a tapered optical fiber,” Opt. Express 19(18), 17065–17074 (2011).
    [Crossref] [PubMed]
  11. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [Crossref] [PubMed]
  12. T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
    [Crossref]
  13. P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
    [Crossref] [PubMed]
  14. V. Miralles, A. Huerre, F. Malloggi, and M.-C. Jullien, “A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics 3(1), 33–67 (2013).
    [Crossref]
  15. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
    [Crossref] [PubMed]
  16. M. S. Jaeger, T. Mueller, and T. Schnelle, “Thermometry in dielectrophoresis chips for contact-free cell handling,” J. Phys. D Appl. Phys. 40(1), 95–105 (2007).
    [Crossref]
  17. R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
    [Crossref] [PubMed]
  18. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
    [Crossref] [PubMed]
  19. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  20. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
    [Crossref] [PubMed]
  21. R. Samy, T. Glawdel, and C. L. Ren, “Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B,” Anal. Chem. 80(2), 369–375 (2008).
    [Crossref] [PubMed]
  22. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
    [Crossref] [PubMed]
  23. C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
    [Crossref] [PubMed]
  24. D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
    [Crossref] [PubMed]
  25. B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
    [Crossref] [PubMed]
  26. J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
    [Crossref]
  27. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5(3), 442–463 (2011).
    [Crossref]
  28. K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull. 36(12), 1020–1027 (2011).
    [Crossref]
  29. H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
    [Crossref] [PubMed]
  30. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4(2), 709–716 (2010).
    [Crossref] [PubMed]
  31. D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
    [Crossref]

2013 (5)

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

V. Miralles, A. Huerre, F. Malloggi, and M.-C. Jullien, “A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics 3(1), 33–67 (2013).
[Crossref]

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
[Crossref] [PubMed]

2012 (3)

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

2011 (4)

H. Xin, X. Li, and B. Li, “Massive photothermal trapping and migration of particles by a tapered optical fiber,” Opt. Express 19(18), 17065–17074 (2011).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5(3), 442–463 (2011).
[Crossref]

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull. 36(12), 1020–1027 (2011).
[Crossref]

2010 (2)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

2009 (1)

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

2008 (5)

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8(7), 1116–1120 (2008).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

R. Samy, T. Glawdel, and C. L. Ren, “Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B,” Anal. Chem. 80(2), 369–375 (2008).
[Crossref] [PubMed]

2007 (5)

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18892–18897 (2007).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

M. S. Jaeger, T. Mueller, and T. Schnelle, “Thermometry in dielectrophoresis chips for contact-free cell handling,” J. Phys. D Appl. Phys. 40(1), 95–105 (2007).
[Crossref]

2006 (2)

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2005 (1)

H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

2001 (1)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

1999 (1)

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[Crossref]

Adrian, R. J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[Crossref]

Amaral, V. S.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Benninger, R. K. P.

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Bettinelli, M.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Brites, C. D.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

Brites, C. D. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Bustamante, C.

H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Cai, D. K.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Carlos, L. D.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Cerullo, G.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5(3), 442–463 (2011).
[Crossref]

Chan, J. W.

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8(7), 1116–1120 (2008).
[Crossref] [PubMed]

Cheng, Y.

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull. 36(12), 1020–1027 (2011).
[Crossref]

Chooi, J. Y.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Choudhury, D.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

Cui, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

del Carmen Iglesias-de la Cruz, M.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

del Rosal, B.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
[Crossref] [PubMed]

DeMello, A. J.

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Di Carlo, D.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18892–18897 (2007).
[Crossref] [PubMed]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

Domachuk, P.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Ebert, S.

Eggleton, B.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Erickson, D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

French, P. M. W.

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Fritsch, A. W.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Glawdel, T.

R. Samy, T. Glawdel, and C. L. Ren, “Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B,” Anal. Chem. 80(2), 369–375 (2008).
[Crossref] [PubMed]

Guck, J.

Haro-González, P.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Heise, H. M.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5(3), 442–463 (2011).
[Crossref]

Hofmann, O.

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Huerre, A.

V. Miralles, A. Huerre, F. Malloggi, and M.-C. Jullien, “A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics 3(1), 33–67 (2013).
[Crossref]

Irimia, D.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18892–18897 (2007).
[Crossref] [PubMed]

Jaeger, M. S.

M. S. Jaeger, T. Mueller, and T. Schnelle, “Thermometry in dielectrophoresis chips for contact-free cell handling,” J. Phys. D Appl. Phys. 40(1), 95–105 (2007).
[Crossref]

Jaque, D.

B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
[Crossref] [PubMed]

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Jullien, M.-C.

V. Miralles, A. Huerre, F. Malloggi, and M.-C. Jullien, “A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics 3(1), 33–67 (2013).
[Crossref]

Kar, A. K.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

Käs, J. A.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Kießling, T. R.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Klug, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Koç, Y.

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Kuckuk, R.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Lau, A. Y.

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8(7), 1116–1120 (2008).
[Crossref] [PubMed]

Lee, L. M.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Lee, L. P.

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8(7), 1116–1120 (2008).
[Crossref] [PubMed]

Li, B.

Li, X.

Lima, P. P.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Lincoln, B.

Lipson, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

Loufakis, D. N.

B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
[Crossref] [PubMed]

Lu, C.

B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
[Crossref] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Maestro, L. M.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Malloggi, F.

V. Miralles, A. Huerre, F. Malloggi, and M.-C. Jullien, “A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics 3(1), 33–67 (2013).
[Crossref]

Mao, H.

H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

Millán, A.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Miralles, V.

V. Miralles, A. Huerre, F. Malloggi, and M.-C. Jullien, “A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics 3(1), 33–67 (2013).
[Crossref]

Monat, C.

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Moore, S. D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Mueller, T.

M. S. Jaeger, T. Mueller, and T. Schnelle, “Thermometry in dielectrophoresis chips for contact-free cell handling,” J. Phys. D Appl. Phys. 40(1), 95–105 (2007).
[Crossref]

Neil, M. A. A.

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Neyer, A.

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Osellame, R.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5(3), 442–463 (2011).
[Crossref]

Palacio, F.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Paterson, L.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5(3), 442–463 (2011).
[Crossref]

Psaltis, D.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Ramsay, W. T.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

Ren, C. L.

R. Samy, T. Glawdel, and C. L. Ren, “Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B,” Anal. Chem. 80(2), 369–375 (2008).
[Crossref] [PubMed]

Requejo-Isidro, J.

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Ricardo Arias-Gonzalez, J.

H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Rodenas, A.

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

Sakakibara, J.

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[Crossref]

Samy, R.

R. Samy, T. Glawdel, and C. L. Ren, “Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B,” Anal. Chem. 80(2), 369–375 (2008).
[Crossref] [PubMed]

Santacruz-Gomez, K.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Schmidt, B. S.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Schnelle, T.

M. S. Jaeger, T. Mueller, and T. Schnelle, “Thermometry in dielectrophoresis chips for contact-free cell handling,” J. Phys. D Appl. Phys. 40(1), 95–105 (2007).
[Crossref]

Sevilla, P. R.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Silva, N. J.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Smith, S. B.

H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Solé, J. G.

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Stange, R.

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Sugioka, K.

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull. 36(12), 1020–1027 (2011).
[Crossref]

Sun, C.

B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
[Crossref] [PubMed]

Tinoco, I.

H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Tompkins, R. G.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18892–18897 (2007).
[Crossref] [PubMed]

Toner, M.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18892–18897 (2007).
[Crossref] [PubMed]

Travis, K.

Vetrone, F.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Xin, H.

Yang, A. H.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Yang, C.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

ACS Nano (1)

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale,” Adv. Mater. 22(40), 4499–4504 (2010).
[Crossref] [PubMed]

Anal. Chem. (3)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[Crossref] [PubMed]

R. Samy, T. Glawdel, and C. L. Ren, “Method for microfluidic whole-chip temperature measurement using thin-film poly(dimethylsiloxane)/Rhodamine B,” Anal. Chem. 80(2), 369–375 (2008).
[Crossref] [PubMed]

R. K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, “Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging,” Anal. Chem. 78(7), 2272–2278 (2006).
[Crossref] [PubMed]

Biophys. J. (1)

H. Mao, J. Ricardo Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, “Temperature Control Methods in a Laser Tweezers System,” Biophys. J. 89(2), 1308–1316 (2005).
[Crossref] [PubMed]

Diagnostics (1)

V. Miralles, A. Huerre, F. Malloggi, and M.-C. Jullien, “A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics 3(1), 33–67 (2013).
[Crossref]

Exp. Fluids (1)

J. Sakakibara and R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26(1-2), 7–15 (1999).
[Crossref]

J. Nanophotonics (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).

J. Phys. D Appl. Phys. (1)

M. S. Jaeger, T. Mueller, and T. Schnelle, “Thermometry in dielectrophoresis chips for contact-free cell handling,” J. Phys. D Appl. Phys. 40(1), 95–105 (2007).
[Crossref]

Lab Chip (3)

D. Choudhury, D. Jaque, A. Rodenas, W. T. Ramsay, L. Paterson, and A. K. Kar, “Quantum dot enabled thermal imaging of optofluidic devices,” Lab Chip 12(13), 2414–2420 (2012).
[Crossref] [PubMed]

B. del Rosal, C. Sun, D. N. Loufakis, C. Lu, and D. Jaque, “Thermal loading in flow-through electroporation microfluidic devices,” Lab Chip 13(15), 3119–3127 (2013).
[Crossref] [PubMed]

A. Y. Lau, L. P. Lee, and J. W. Chan, “An integrated optofluidic platform for Raman-activated cell sorting,” Lab Chip 8(7), 1116–1120 (2008).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev. 5(3), 442–463 (2011).
[Crossref]

MRS Bull. (1)

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull. 36(12), 1020–1027 (2011).
[Crossref]

Nanoscale (3)

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids,” Nanoscale 5(16), 7572–7580 (2013).
[Crossref] [PubMed]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Nature (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

T. R. Kießling, R. Stange, J. A. Käs, and A. W. Fritsch, “Thermorheology of living cells—impact of temperature variations on cell mechanics,” New J. Phys. 15(4), 045026 (2013).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18892–18897 (2007).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Small (1)

P. Haro-González, W. T. Ramsay, L. M. Maestro, B. del Rosal, K. Santacruz-Gomez, M. del Carmen Iglesias-de la Cruz, F. Sanz-Rodríguez, J. Y. Chooi, P. R. Sevilla, M. Bettinelli, D. Choudhury, A. K. Kar, J. G. Solé, D. Jaque, and L. Paterson, “Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells,” Small 9(12), 2162–2170 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the four devices used in this work: (a) 100 um deep microchannel for particle trapping; (b) 50x70 µm channel illuminated from one side by a multimode optical fiber; (c) 70 µm deep microchannel for particle sorting; (d) monolithic device with an integrated waveguide.
Fig. 2
Fig. 2 Experimental setup and thermal calibration. (a) and (b) Schematic representation of the two experimental setups used for thermal imaging of the different optofluidic systems. (a) Optical trapping setup; (b) Setup for optofluidic devices with an on-chip fiber input for laser illumination. (c) Temperature dependence of the emitted intensity ratio of the two luminescent dyes (RhB and Rh110) used in this work.
Fig. 3
Fig. 3 (a) Image sequence recorded during the optical trapping of a human lymphocyte under a 980 nm trapping beam, with a set trapping power of 300 mW (b) Thermal loading in an optical trap at different flow rates. The trapping parameters were equal to those in Fig. 3(a). (c) and (d) Temperature increment and displacement of the maximum position at different flow rates for a 980 nm trapping power of 300 mW. Experimental results are indicated by dots, while empty circles represent the values predicted by numerical simulations. (e) Thermal images of an optical trap at different flow rates obtained from COMSOL modelling. The simulation conditions were set to match those of Fig. 3(b).
Fig. 4
Fig. 4 Thermal loading in an optical trap generated by a 980 nm laser beam as obtained for two different channel heights (100 and 200 µm). Dots are experimental data and solid lines are the best fits to a double exponential function. Inset includes the heating curve obtained in the 200 µm showing the two exponential curves resulting from the fitting procedure.
Fig. 5
Fig. 5 Time evolution of the temperature of an optical trap generated by a 980 nm laser beam focused in a 100 µm high channel as obtained for three different flow rates. Dots are experimental data and solid lines are the best fits to a double or single exponential function. The fast and slow components are also plotted in each case. Inset shows the relative contribution of the slow component for different flow rates. Dots are experimental data and the dashed line is added for clarity.
Fig. 6
Fig. 6 Effect of flow rate and irradiation wavelength on the thermal loading in the microchannel depicted in Fig. 1(b). (a) Thermal images obtained under 130 mW trapping beam power at two different wavelengths: 1480 nm and 980 nm. (b) Maximum temperature increment in the microchannel as a function of the laser power for 1480 nm trapping beam power at two different flow rates. (c) Thermal images obtained under 1480 nm irradiation (130 mW laser power) at four different flow rates.
Fig. 7
Fig. 7 (a) Time evolution of the temperature distribution created in the channel depicted in Fig. 1(b). Thermal images are represented for different times after the 130 mW laser power at 1480 nm was turned on. Scale bar is 100 µm. (b) Time evolution of the normalized temperature increment in the microchannel in the static case and (c) under an applied flow of 1 µL·min−1.
Fig. 8
Fig. 8 Top. Trajectories of microparticles circulating through the sorting channel depicted in Fig. 1(c) at a laser power of 450 mW. Bottom. Thermal loading in the sorting device at three different times (50 s, 500 ms and 5 s) after the 980 nm laser beam has been turned on at three different flow rates (static, 0.1 and 1 µL·min−1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ T t r a p = α a b s ( λ t r a p ) · P l 2 π K · ln ( D R l )
t T = L 2 K

Metrics