Abstract

An elliptical core tellurite microstructured optical fiber with high birefringence was demonstrated and the chromatic dispersion of the two orthogonal modes in this fiber was experimentally characterized by a white light spectral interferometric technique over a wide spectral range. A series of spectral interferograms as a function of the optical path difference were recorded in the Mach-Zehnder interferometer. The birefringence dependence of the wavelength in the fiber was determined by interferograms. The measured and calculated dispersion matched well within the whole spectrum range under test.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum generation from a multiple-ring-holes tellurite microstructured optical fiber pumped by a 2 μm mode-locked picosecond fiber laser

Dinghuan Deng, Weiqing Gao, Meisong Liao, Zhongchao Duan, Tonglei Cheng, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 52(16) 3818-3823 (2013)

Dispersion and birefringence of irregularly microstructured fiber with an elliptic core

Hyoung-Gyu Choi, Chul-Sik Kee, Kyung-Han Hong, JaeHee Sung, Soan Kim, Do-Kyeong Ko, Jongmin Lee, Jae-Eun Kim, and Hae Yong Park
Appl. Opt. 46(35) 8493-8498 (2007)

Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry

Petr Hlubina, Tadeusz Martynkien, and Waclaw Urbańczyk
Opt. Express 11(22) 2793-2798 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. M. R. Pinto and M. Lopez-Amo, “Photonic crystal fibers for sensing applications,” J. Sens. 2012, 21 (2012).
    [Crossref]
  2. G. Xiao and W. J. Bock, Photonic Sensing: Principles and Applications for Safety and Security Monitoring (John Wiley & Sons, 2012).
  3. L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
    [Crossref]
  4. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
    [Crossref]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  6. D. Chen and L. Shen, “Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
    [Crossref]
  7. M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. Abdur Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
    [Crossref]
  8. H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
    [Crossref]
  9. R. A. H. El-Mallawany, Tellurite Glasses Handbook: physical properties and data (CRC press, 2011).
  10. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [Crossref] [PubMed]
  11. D. Deng, W. Gao, M. Liao, Z. Duan, T. Cheng, T. Suzuki, and Y. Ohishi, “Supercontinuum generation from a multiple-ring-holes tellurite microstructured optical fiber pumped by a 2 μm mode-locked picosecond fiber laser,” Appl. Opt. 52(16), 3818–3823 (2013).
    [Crossref] [PubMed]
  12. W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt. 51(8), 1071–1075 (2012).
    [Crossref] [PubMed]
  13. G. P. Agrawal, in Nonlinear Fiber Optics, 4th ed. (Academic, 2007), p. 11.
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  15. S. Roy, S. K. Bhadra, K. Saitoh, M. Koshiba, and G. P. Agrawal, “Dynamics of Raman soliton during supercontinuum generation near the zero-dispersion wavelength of optical fibers,” Opt. Express 19(11), 10443–10455 (2011).
    [Crossref] [PubMed]

2014 (1)

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. Abdur Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (1)

2009 (1)

2007 (1)

D. Chen and L. Shen, “Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2000 (1)

1992 (1)

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

1985 (1)

L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[Crossref]

1981 (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[Crossref]

Abdur Razzak, S. M.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. Abdur Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Agrawal, G. P.

Arriaga, J.

Bhadra, S. K.

Birks, T. A.

Bürger, H.

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

Chaudhari, C.

Chen, D.

D. Chen and L. Shen, “Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

Cheng, T.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cohen, L.

L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[Crossref]

Deng, D.

Duan, Z.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Hasan, M. I.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. Abdur Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Hobert, H.

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

Kneipp, K.

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

Knight, J. C.

Koshiba, M.

Kozhukharov, V.

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

Liao, M.

Lopez-Amo, M.

A. M. R. Pinto and M. Lopez-Amo, “Photonic crystal fibers for sensing applications,” J. Sens. 2012, 21 (2012).
[Crossref]

Mangan, B. J.

Neov, S.

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

Ohishi, Y.

Ortigosa-Blanch, A.

Pinto, A. M. R.

A. M. R. Pinto and M. Lopez-Amo, “Photonic crystal fibers for sensing applications,” J. Sens. 2012, 21 (2012).
[Crossref]

Qin, G.

Roy, S.

Russell, P. S. J.

Saitoh, K.

Samiul Habib, M.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. Abdur Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[Crossref]

Selim Habib, M.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. Abdur Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Shen, L.

D. Chen and L. Shen, “Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[Crossref]

Suzuki, T.

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[Crossref]

Vogel, W.

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

Wadsworth, W. J.

Yan, X.

Yang, L.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Chen and L. Shen, “Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

J. Lightwave Technol. (1)

L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[Crossref]

J. Non-Cryst. Solids (1)

H. Bürger, K. Kneipp, H. Hobert, W. Vogel, V. Kozhukharov, and S. Neov, “Glass formation, properties and structure of glasses in the TeO2-ZnO system,” J. Non-Cryst. Solids 151(1-2), 134–142 (1992).
[Crossref]

J. Sens. (1)

A. M. R. Pinto and M. Lopez-Amo, “Photonic crystal fibers for sensing applications,” J. Sens. 2012, 21 (2012).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. Abdur Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Opt. Lett. (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (3)

G. P. Agrawal, in Nonlinear Fiber Optics, 4th ed. (Academic, 2007), p. 11.

G. Xiao and W. J. Bock, Photonic Sensing: Principles and Applications for Safety and Security Monitoring (John Wiley & Sons, 2012).

R. A. H. El-Mallawany, Tellurite Glasses Handbook: physical properties and data (CRC press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The cross-section of of the tellurite MOF taken by microscope (left) and SEM (right).
Fig. 2
Fig. 2 Experimental setup for measuring chromatic dispersion with a Mach-Zehnder interferometer.
Fig. 3
Fig. 3 Typical four fringes for the elliptical core tellurite MOF.
Fig. 4
Fig. 4 OPD dependence on wavelength recorded from interference fringes.
Fig. 5
Fig. 5 Measured dispersion of the fast axis and slow axis.
Fig. 6
Fig. 6 Comparison of simulated chromatic dispersion and measured chromatic dispersion for the two orthogonal modes.
Fig. 7
Fig. 7 Beat length and modal refractive indices of the elliptical core tellurite MOF.
Fig. 8
Fig. 8 Soliton generation in the fast axis pumped close to ZDW in the normal dispersion region.
Fig. 9
Fig. 9 Soliton generation in the slow axis pumped close to ZDW in the normal dispersion region.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

B m = | β x β y | k 0 =| n x n y |
L B = 2π | β x β y | = λ | n x n y | = λ B m

Metrics