Abstract

Graphene Bragg gratings (GBGs) on microfiber are proposed and investigated in this paper. Numerical analysis and simulated results show that the mode distribution, transmission loss, and central wavelength of the GBG are controllable by changing the diameter of the microfiber or the refractive index of graphene. Such type of GBGs with tunability may find important applications in optical fiber communication and sensing as all-fiber in-line devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature compensated microfiber Bragg gratings

Shuai Gao, Long Jin, Yang Ran, Li-Peng Sun, Jie Li, and Bai-Ou Guan
Opt. Express 20(16) 18281-18286 (2012)

A compact broadband microfiber Bragg grating

Ming Ding, Michalis N. Zervas, and Gilberto Brambilla
Opt. Express 19(16) 15621-15626 (2011)

Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing

Yu Wu, Baicheng Yao, Anqi Zhang, Yunjiang Rao, Zegao Wang, Yang Cheng, Yuan Gong, Weili Zhang, Yuanfu Chen, and K. S. Chiang
Opt. Lett. 39(5) 1235-1237 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  2. F. J. García de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
    [Crossref] [PubMed]
  3. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
    [Crossref]
  4. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
    [Crossref] [PubMed]
  5. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
    [Crossref] [PubMed]
  6. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [Crossref] [PubMed]
  7. M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
    [Crossref]
  8. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  9. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  10. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  11. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  12. G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
    [Crossref]
  13. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  14. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
    [Crossref]
  15. J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene Bragg gratings,” Opt. Express 22(5), 5283–5290 (2014).
    [Crossref] [PubMed]
  16. J. Tao, X. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, “Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth,” Opt. Lett. 39(2), 271–274 (2014).
    [Crossref] [PubMed]
  17. Y. Rao, “In fiber Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [Crossref]
  18. A. Othonos and K. Kalli, “Fiber Bragg gratings: Fundamentals and applications in telecommunications and sensing,” Artech House (Boston, Mass. USA), 1999.
  19. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  20. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
    [Crossref] [PubMed]
  21. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
    [Crossref]
  22. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  23. X. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express 16(26), 22105–22112 (2008).
    [Crossref] [PubMed]
  24. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
    [Crossref]
  25. B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, Y. Chen, and Y. Li, “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Opt. Express 21(24), 29818–29826 (2013).
    [Crossref] [PubMed]
  26. Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
    [Crossref] [PubMed]
  27. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  28. X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
    [Crossref]
  29. T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  30. J. T. Kim and S. Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
    [Crossref] [PubMed]
  31. B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
    [Crossref]
  32. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  33. Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
    [Crossref] [PubMed]
  34. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
    [Crossref] [PubMed]
  35. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  36. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of 80° tilted structures,” Opt. Lett. 31(9), 1193–1195 (2006).
    [Crossref] [PubMed]
  37. D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt. 43(29), 5425–5428 (2004).
    [Crossref] [PubMed]
  38. J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, “Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,” Opt. Lett. 29(4), 331–333 (2004).
    [Crossref] [PubMed]
  39. O. V. Kotov, M. A. Kol’chenko, and Y. E. Lozovik, “Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media,” Opt. Express 21(11), 13533–13546 (2013).
    [Crossref] [PubMed]
  40. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref] [PubMed]
  41. X. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37(12), 2394–2396 (2012).
    [Crossref] [PubMed]
  42. Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
    [Crossref]

2014 (6)

J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene Bragg gratings,” Opt. Express 22(5), 5283–5290 (2014).
[Crossref] [PubMed]

J. Tao, X. Yu, B. Hu, A. Dubrovkin, and Q. J. Wang, “Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth,” Opt. Lett. 39(2), 271–274 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

2013 (4)

2012 (6)

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

X. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37(12), 2394–2396 (2012).
[Crossref] [PubMed]

2011 (5)

J. T. Kim and S. Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express 19(24), 24557–24562 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2010 (4)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (1)

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

2008 (6)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

X. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express 16(26), 22105–22112 (2008).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

2007 (3)

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (3)

1997 (2)

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Y. Rao, “In fiber Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Ahn, J. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Anugrah, Y.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Avouris, P.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Bae, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Barton, J. S.

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Basov, D. N.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Bennion, I.

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

Capmany, J.

Castro, E. V.

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Chen, B.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, X.

Chen, Y.

Chen, Y. P.

Chen, Z. L.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Cheng, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, Y. Chen, and Y. Li, “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Opt. Express 21(24), 29818–29826 (2013).
[Crossref] [PubMed]

Chiang, K. S.

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Choi, M. R.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Choi, S. Y.

Chua, L. L.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Clark, J.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Crommie, M. F.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Das Sarma, S.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

Domenech, D.

dos Santos, J. M.

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Dubrovkin, A.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Freitag, M.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Friend, R. H.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref] [PubMed]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Girit, C.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Goh, R. G. S.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Gong, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, Y. Chen, and Y. Li, “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Opt. Express 21(24), 29818–29826 (2013).
[Crossref] [PubMed]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

Guinea, F.

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Han, T. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, Z.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

He, X.

X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

X. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett. 37(12), 2394–2396 (2012).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Ho, P. K. H.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Hong, B. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Hu, B.

Hu, T.

X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Hwang, E. H.

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Jones, J. D.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kim, J. C.

Kim, J. T.

Kim, P.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Koester, S. J.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Kol’chenko, M. A.

Kotov, O. V.

Lee, B. H.

Lee, K. S.

Lee, T. W.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Lee, Y.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Li, H.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Li, M.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Li, Y.

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lim, G. K.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Lim, J. H.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liu, Z.

X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Liu, Z. B.

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lou, J.

Low, T.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

Lozovik, Y. E.

MacPherson, W. N.

Martin, M. C.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Mazur, E.

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Morozov, S. V.

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Muñoz, P.

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

Neto, A. H.

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Ng, W.-H.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nilsson, J.

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Nolte, D. D.

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Peres, N. M.

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

Polini, M.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Rao, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, Y. Chen, and Y. Li, “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Opt. Express 21(24), 29818–29826 (2013).
[Crossref] [PubMed]

Y. Rao, “In fiber Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tan, H.-W.

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tang, T. T.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Tao, J.

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Tian, J.

X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Tong, L.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, D.

X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Wang, D. N.

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Wang, H.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, Q. J.

Wang, X.

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, Z.

Woo, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Wu, B.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Wu, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, Y. Chen, and Y. Li, “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Opt. Express 21(24), 29818–29826 (2013).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xia, F.

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Yang, M.

X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Yao, B.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Z. Wang, Y. Cheng, Y. Rao, Y. Gong, Y. Chen, and Y. Li, “Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach-Zehnder interferometer,” Opt. Express 21(24), 29818–29826 (2013).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, X.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhang, A.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, L.

Zhang, W.

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhao, D.

Zhou, K.

Zhou, X.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

IEEE J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. He, Z. Liu, D. Wang, M. Yang, T. Hu, and J. Tian, “Saturable absorber based on graphene-covered-microfiber,” IEEE Photon. Technol. Lett. 25(14), 1392–1394 (2013).
[Crossref]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four wave mixing in a microfiber attached onto a graphene film,” IEEE Photon. Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Meas. Sci. Technol. (1)

Y. Rao, “In fiber Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[Crossref]

Nano Lett. (1)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Nat. Photonics (8)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W.-H. Ng, H.-W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2012).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nat. Phys. (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. B (1)

E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007).
[Crossref]

Phys. Rev. Lett. (3)

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, “Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99(21), 216802 (2007).
[Crossref] [PubMed]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Science (4)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308–1310 (2008).
[Crossref] [PubMed]

F. J. García de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Sens. Actuat. B (1)

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Other (1)

A. Othonos and K. Kalli, “Fiber Bragg gratings: Fundamentals and applications in telecommunications and sensing,” Artech House (Boston, Mass. USA), 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic configuration of the GBG on microfiber.
Fig. 2
Fig. 2 (a) Cross sectional view of the microfiber. (b) Cross sectional view of the GCM. (c) Correlation of the microfiber radius and the effective index, for microfiber (solid curve) and GCM (dashed curve) respectively. (d) Correlation of the microfiber radius and the fractional power inside the core, for microfiber (solid curve) and GCM (dashed curve) respectively. (e), (f), and (g) are the mode fields for microfibers with radius of 0.2μm, 0.5μm and 1μm. (h), (i), and (j) are the mode fields for microfibers with radius of 0.2μm, 0.5μm and 1μm.
Fig. 3
Fig. 3 (a) Typical mode field distributions and (b) reflection spectra for φ = 180°, 240°, and 360°. Here R is 0.5μm. (c)
Fig. 4
Fig. 4 Calculated results: (a) Reflectivity of the GBG with R of 0.2μm, 0.5μm and 1μm. Reflectivity of the GBG with R of 0.5μm varies with Δng = 0.01, 0.02 and 0.03. For the GBG, correlations of (c) Δng-reflectivity, (d) Δng-ΔλB and (e) Δng-Bragg peak width.
Fig. 5
Fig. 5 For the bilayer GBG: (a) “R-λB” (red solid curve) and “R-Reflectivity” (blue dashed curve) correlations. (b) “Δng-ΔλB” (red solid curve) and “Δng-Reflectivity” (blue dashed curve) correlations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β TE = k 0 1 ( η 0 σ g 2 ) 2 ; β TM = k 0 1 ( 2 η 0 σ g ) 2
M= j=1 N [ cos δ j i τ j sin δ j i τ j sin δ j cos δ j ]
R= [ ( η 0 M 1,1 + η 0 2 M 1,2 )( M 2,1 + η 0 M 2,2 ) ( η 0 M 1,1 + η 0 2 M 1,2 )+( M 2,1 + η 0 M 2,2 ) ] 2

Metrics