Abstract

Coherent Nyquist pulses have been used for optical time division multiplexed (OTDM) digital coherent transmission, and a single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km is demonstrated. The ability to considerably reduce the spectral bandwidth of the data signal enabled us to increase the spectral efficiency from 3.2 bit/s/Hz to 7.5 bit/s/Hz when using a Gaussian pulse train.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization

David Odeke Otuya, Keisuke Kasai, Masato Yoshida, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 21(19) 22808-22816 (2013)

Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 10.6 bit/s/Hz

Junpei Nitta, Masato Yoshida, Kosuke Kimura, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 25(13) 15199-15207 (2017)

Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz

Kosuke Kimura, Junpei Nitta, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(13) 17418-17428 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Richter, C. Schmidt-Langhorst, M. Nolle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” in Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles (2011), PDPA9.
    [Crossref]
  2. D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
    [Crossref] [PubMed]
  3. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  4. K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
    [Crossref]
  5. J. Leuthold, R. Schmogrow, D. Hillerkuss, C. G. Koos, and W. Freude “Nyquist pulse shaping in optical communication,” in Proceedings of Photonics Networks and Devices, Puerto Rico (2013), NW3C.1.
  6. K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, “640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express 21(18), 21062–21075 (2013).
    [Crossref] [PubMed]
  7. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. Hansen Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose (2013), CTh5D.5.
    [Crossref]
  8. H. N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, and S. Namiki, “Seamless spectral defragmentation of Nyquist OTDM-WDM signals in add-drop node for all-optical elastic network,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), London (2013), We.1.C.5.
  9. T. Richter, M. Nolle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
    [Crossref]
  10. D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,” in Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco (2014), W1A.4.
    [Crossref]
  11. H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
    [Crossref]
  12. M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express 19(26), B574–B580 (2011).
    [Crossref] [PubMed]
  13. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
    [Crossref]
  14. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [Crossref] [PubMed]
  15. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim (2006), OTuF2.
  16. C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
    [Crossref]
  17. K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
    [Crossref]

2014 (1)

T. Richter, M. Nolle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

2008 (1)

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[Crossref]

2007 (2)

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[Crossref] [PubMed]

2006 (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

1928 (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Boerner, C.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

Ferber, S.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

Frey, F.

T. Richter, M. Nolle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

Goto, H.

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[Crossref]

Guan, P.

Harako, K.

Hirooka, T.

Hongo, J.

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

Izutsu, M.

Kasai, K.

D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
[Crossref] [PubMed]

M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express 19(26), B574–B580 (2011).
[Crossref] [PubMed]

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Kawanishi, T.

Ludwig, R.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

Marembert, V.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

Nakazawa, M.

K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, “640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express 21(18), 21062–21075 (2013).
[Crossref] [PubMed]

D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
[Crossref] [PubMed]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express 19(26), B574–B580 (2011).
[Crossref] [PubMed]

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Nolle, M.

T. Richter, M. Nolle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

Nyquist, H.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Otuya, D. O.

Richter, T.

T. Richter, M. Nolle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

Ruan, P.

Sakamoto, T.

Schmidt-Langhorst, C.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

Schubert, C.

T. Richter, M. Nolle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

Seya, D.

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

Weber, H. G.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

Yoshida, M.

D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express 21(19), 22808–22816 (2013).
[Crossref] [PubMed]

M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express 19(26), B574–B580 (2011).
[Crossref] [PubMed]

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Richter, M. Nolle, F. Frey, and C. Schubert, “Generation and coherent reception of 107-GBd optical Nyquist BPSK, QPSK, and 16QAM,” IEEE Photon. Technol. Lett. 26(9), 877–880 (2014).
[Crossref]

IEICE Electron. Express (3)

K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express 5(1), 6–10 (2008).
[Crossref]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express 3(22), 487–492 (2006).
[Crossref]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express 4(3), 77–81 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Trans. Am. Inst. Electr. Eng. (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928).
[Crossref]

Other (7)

T. Richter, C. Schmidt-Langhorst, M. Nolle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” in Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles (2011), PDPA9.
[Crossref]

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim (2006), OTuF2.

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proceedings of the Optical Fiber Communication Conf. (OFC), Anaheim (2005), OTuO3.
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. Hansen Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose (2013), CTh5D.5.
[Crossref]

H. N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, and S. Namiki, “Seamless spectral defragmentation of Nyquist OTDM-WDM signals in add-drop node for all-optical elastic network,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), London (2013), We.1.C.5.

D. O. Otuya, K. Kasai, T. Hirooka, M. Yoshida, and M. Nakazawa, “1.92 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,” in Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco (2014), W1A.4.
[Crossref]

J. Leuthold, R. Schmogrow, D. Hillerkuss, C. G. Koos, and W. Freude “Nyquist pulse shaping in optical communication,” in Proceedings of Photonics Networks and Devices, Puerto Rico (2013), NW3C.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The principle of coherent OTDM-Nyquist pulse transmission.
Fig. 2
Fig. 2 Experimental setup for 1.92 Tbit/s, Pol-Mux-64 QAM coherent optical Nyquist pulse transmission.
Fig. 3
Fig. 3 Optical spectrum of comb generator output (Res: 0.01 nm).
Fig. 4
Fig. 4 (a) Optical spectrum (Res: 0.01 nm) and (b) time waveform of 10 GHz Nyquist pulse.
Fig. 5
Fig. 5 Optical spectrum (Res: 0.01 nm) of the 1.92 Tbit/s, 64 QAM coherent optical Nyquist pulse data and pilot tone signal.
Fig. 6
Fig. 6 NOLM operation for a 160 Gbaud, 64 QAM Nyquist pulse data signal.
Fig. 7
Fig. 7 (a) Bit Error rate (BER) as a function of roll-off factor α, (b) launch power optimization for the 1.92 Tbit/s, Pol-Mux-64 QAM Nyquist pulse signal.
Fig. 8
Fig. 8 Optical spectrum (Res.: 2 nm) of 1.92 Tbit/s, Pol-Mux-64 QAM Nyquist pulse signal before and after transmission.
Fig. 9
Fig. 9 (a) Optimization of NOLM control pulse width for 160 Gbaud coherent Nyquist OTDM demultiplexing, (b) optimization of input data signal power to NOLM.
Fig. 10
Fig. 10 Optical spectra of 10 Gbaud, 64 QAM coherent Nyquist pulsed data signal before and after RZ-CW conversion.
Fig. 11
Fig. 11 Constellation maps for 10 Gbaud, 64 QAM signal (a) for back-to-back, and (b) after 150 km transmission.
Fig. 12
Fig. 12 BER characteristics for (a) one tributary, and (b) all the tributaries after a 150 km transmission at a received power of −12 dBm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r ( t ) = sin ( π t / T ) π t / T cos ( α π t / T ) 1 ( 2 α t / T ) 2 R ( f ) = { T , 0 | f | 1 α 2 T T 2 { 1 sin [ π 2 α ( 2 T | f | 1 ) ] } , 1 α 2 T | f | 1 + α 2 T 0 , | f | 1 + α 2 T

Metrics