Abstract

Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and, recently, for excitation in two-photon optogenetics. GPC allows efficient utilization of typical Gaussian lasers in such applications using binary-only phase modulation. In this work, we experimentally verify previously derived conditions for photon-efficient light shaping with GPC [Opt. Express 22(5), 5299 (2014)]. We demonstrate a compact implementation of GPC for creating practical illumination shapes that can find use in light-efficient industrial or commercial applications. Using a dynamic spatial light modulator, we also show simple and efficient beam shaping of reconfigurable shapes geared towards materials processing, biophotonics research and other contemporary applications. Our experiments give ~80% efficiency, ~3x intensity gain, and ~90% energy savings which are in good agreement with previous theoretical estimations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GPC Light Shaper for speckle-free one- and two-photon contiguous pattern excitation

Andrew Bañas, Darwin Palima, Mark Villangca, Thomas Aabo, and Jesper Glückstad
Opt. Express 22(5) 5299-5311 (2014)

GPC light shaping a supercontinuum source

Oleksii Kopylov, Andrew Bañas, Mark Villangca, Darwin Palima, and Jesper Glückstad
Opt. Express 23(3) 1894-1905 (2015)

Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

Sandeep Tauro, Andrew Bañas, Darwin Palima, and Jesper Glückstad
Opt. Express 19(8) 7106-7111 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
    [Crossref] [PubMed]
  2. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [Crossref]
  3. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [Crossref] [PubMed]
  4. E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
    [PubMed]
  5. D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15(19), 11971–11977 (2007).
    [Crossref] [PubMed]
  6. T. R. M. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109–120 (2003).
    [Crossref]
  7. C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
    [Crossref]
  8. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000).
    [Crossref] [PubMed]
  9. W. B. Veldkamp, “Laser beam profile shaping with interlaced binary diffraction gratings,” Appl. Opt. 21(17), 3209–3212 (1982).
    [Crossref] [PubMed]
  10. M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
    [Crossref]
  11. A. Bañas, D. Palima, M. Villangca, T. Aabo, and J. Glückstad, “GPC light shaper for speckle-free one- and two-photon contiguous pattern excitation,” Opt. Express 22(5), 5299–5311 (2014).
    [Crossref] [PubMed]
  12. A. W. Lohmann and D. P. Paris, “Binary fraunhofer holograms, generated by computer,” Appl. Opt. 6(10), 1739–1748 (1967).
    [Crossref] [PubMed]
  13. W. H. Lee, “Sampled Fourier transform hologram generated by computer,” Appl. Opt. 9(3), 639–643 (1970).
    [Crossref] [PubMed]
  14. J. Glückstad and D. Z. Palima, Generalized Phase Contrast: Applications in Optics and Photonics, Springer Series in Optical Sciences (Springer, 2009).
  15. L. Ge, M. Duelli, and R. Cohn, “Enumeration of illumination and scanning modes from real-time spatial light modulators,” Opt. Express 7(12), 403–416 (2000).
    [Crossref] [PubMed]
  16. T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).
  17. D. Palima and J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. Express 16(2), 1331–1342 (2008).
    [Crossref] [PubMed]
  18. J. Glückstad and P. C. Mogensen, “Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method,” Opt. Commun. 173, 169–175 (2000).
  19. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express 19(8), 7106–7111 (2011).
    [Crossref] [PubMed]
  20. M. Villangca, A. Bañas, O. Kopylov, D. Palima, and J. Glückstad, “GPC-enhanced read-out of holograms,” Submitted to Opt. Express (2014).
  21. V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27(11), 945–947 (2002).
    [Crossref] [PubMed]
  22. D. Palima and J. Glückstad, “Gaussian to uniform intensity shaper based on generalized phase contrast,” Opt. Express 16(3), 1507–1516 (2008).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
[PubMed]

2012 (1)

2011 (2)

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express 19(8), 7106–7111 (2011).
[Crossref] [PubMed]

2010 (1)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (1)

2005 (1)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

2003 (2)

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
[Crossref]

2002 (1)

2000 (3)

1999 (1)

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

1982 (1)

1970 (1)

1967 (1)

Aabo, T.

Alonzo, C. A.

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Bañas, A.

Bañas, A. R.

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Cohn, R.

Daria, V.

de Sars, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Duelli, M.

Emiliani, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Eriksen, R. L.

Ge, L.

Glückstad, J.

A. Bañas, D. Palima, M. Villangca, T. Aabo, and J. Glückstad, “GPC light shaper for speckle-free one- and two-photon contiguous pattern excitation,” Opt. Express 22(5), 5299–5311 (2014).
[Crossref] [PubMed]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref] [PubMed]

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express 19(8), 7106–7111 (2011).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

D. Palima and J. Glückstad, “Gaussian to uniform intensity shaper based on generalized phase contrast,” Opt. Express 16(3), 1507–1516 (2008).
[Crossref] [PubMed]

D. Palima and J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. Express 16(2), 1331–1342 (2008).
[Crossref] [PubMed]

D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15(19), 11971–11977 (2007).
[Crossref] [PubMed]

V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27(11), 945–947 (2002).
[Crossref] [PubMed]

J. Glückstad and P. C. Mogensen, “Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method,” Opt. Commun. 173, 169–175 (2000).

Hayasaki, Y.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Hirao, K.

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

Hoffnagle, J. A.

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Jefferson, C. M.

Kelemen, L.

Kopp, C.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Lee, W. H.

Lohmann, A. W.

Matsuoka, T.

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

Meyrueis, P.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Miura, K.

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

Mogensen, P. C.

V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27(11), 945–947 (2002).
[Crossref] [PubMed]

J. Glückstad and P. C. Mogensen, “Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method,” Opt. Commun. 173, 169–175 (2000).

Nishi, M.

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

Nishida, N.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Ormos, P.

Palima, D.

Papagiakoumou, E.

E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
[PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Paris, D. P.

Ravel, L.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Rodrigo, P. J.

Sakakura, M.

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

Sales, T. R. M.

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

Sinzinger, S.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Tauro, S.

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper,” Opt. Express 19(8), 7106–7111 (2011).
[Crossref] [PubMed]

Veldkamp, W. B.

Villangca, M.

Vizsnyiczai, G.

Wang, M. R.

M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Biol. Cell (1)

E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
[PubMed]

J. Opt. A, Pure Appl. Opt. (1)

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Nat. Methods (1)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Glückstad and P. C. Mogensen, “Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method,” Opt. Commun. 173, 169–175 (2000).

Opt. Eng. (1)

M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (1)

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

Prof. SPIE (1)

T. Matsuoka, M. Nishi, M. Sakakura, K. Miura, K. Hirao, D. Palima, S. Tauro, A. Bañas, and J. Glückstad, “Functionalized 2PP structures for the BioPhotonics Workstation,” Prof. SPIE 7950, 79500Q (2011).

Other (2)

J. Glückstad and D. Z. Palima, Generalized Phase Contrast: Applications in Optics and Photonics, Springer Series in Optical Sciences (Springer, 2009).

M. Villangca, A. Bañas, O. Kopylov, D. Palima, and J. Glückstad, “GPC-enhanced read-out of holograms,” Submitted to Opt. Express (2014).

Supplementary Material (1)

» Media 1: MOV (1708 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Side-by-side comparison of a GPC light shaper (left) and amplitude masking (right), illuminated with similarly collimated Gaussian beams. For the same output, the GPC LS, being 84% efficient, requires only 1/3 incident power compared to the 28% efficient amplitude mask. This saves up to 93% of typical amplitude masking losses. The GPC LS is constructed using a 4f imaging lens setup, a binary phase mask at the input and a phase contrast filter at the Fourier plane.

Fig. 2
Fig. 2

Tolerance of the PCF’s positioning. The efficiency (solid lines) and energy savings (broken lines) are evaluated at different axial (a) and lateral (b) displacements.

Fig. 3
Fig. 3

Contour plots showing the efficiency (a) and energy savings (b) of a GPC LS using a 4:3 rectangular phase mask. A black contour line is drawn around the region for which efficiency or energy savings are at least 80%.

Fig. 4
Fig. 4

Relative intensity of a GPC generated darkness compared to the input Gaussian (a). Intensity profiles obtained from a simulation (b) and from experiment (c). This darkness condition is a convenient indicator of correct PCF alignment.

Fig. 5
Fig. 5

Pen sized GPC LS using two f = 50mm Fourier lenses and half inch optics assembly.

Fig. 6
Fig. 6

GPC intensity outputs for a circle (a), a square (b), and a 4:3 rectangle (c) phase mask. The scale bar in (b) is twice the 1/e2 Gaussian waist, and tick marks in (a)-(c) are separated by half the Gaussian waist. Efficiencies, gain and energy savings are also shown, and are consistently around ~80%, ~3x and ~90% respectively. The corresponding intensity line scans are shown in (d)-(f). The axes are normalized relative to a reference Gaussian and tick marks are spaced w0/2 (0.25mm) apart.

Fig. 7
Fig. 7

GPC LS setup with Gaussian illumination on a dynamic spatial light modulator (SLM). The SLM is illuminated with horizontally polarized light and with 2w0 = 4mm. The phase on the SLM is passed through a GPC system using an f = 100mm and f = 150mm Fourier lenses, then imaged into a CCD camera.

Fig. 8
Fig. 8

Reference Gaussian (a) and GPC generated arbitrary patterns (b-f). GPC’s ~3x gain makes the patterns noticeably brighter despite using the same laser power as the reference Gaussian. The patterns are scaled according to Eq. (9), then drawn on a phase-only SLM. A GPC LS after the SLM maps the phase patterns into intensity.

Fig. 9
Fig. 9

(a)-(c) Intensity profiles of various neuron-inspired shapes, directly drawn without scaling, but α-compensated by an outer phase ring. (d)-(f) Snapshots from a pattern that is branching out (Media 1).

Tables (1)

Tables Icon

Table 1 Experimentally Measured Efficiency, Intensity Gain and Energy Savings of GPC Shaped Light Compared with a Hard Truncated or Amplitude Masked Gaussian for a Circle and Different Rectangles

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

α ¯ = 1 π w 0 2 exp[ ( x 2 + y 2 ) / w 0 2 ]exp[ iϕ( x,y ) ]dxdy .
w f = λf / ( π w 0 ) .
η= Δ r f / w f
η= ln( 1 1/2 ) =1.1081,
α ¯ = 1/2 =0.7071.
Δ r f = η λ f π w 0 = 1.1081 × 0.75 μm × 50 mm π × 0.5 mm = 26.5 µm  
W = ζ Rect × ( 2 w 0 ) = 0.4087 × 1 mm = 408.7 μm
H = 3 4 W = 306.5 μm
α ¯ = 1 2 { b ( x , y ) exp [ ( x 2 + y 2 ) / w 0 2 ] d x d y } / π w 0 2 = 1 / 2 .
R comp = w 0 × ln [ ( 1 / 2 1 / 8 ) { b ( x , y ) exp [ ( x 2 + y 2 ) / w 0 2 ] d x d y } / π w 0 2 ] .

Metrics