Abstract

An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [CrossRef]
  2. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [CrossRef]
  3. C. R. Doerr, N. K. Fontaine, L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24(8), 697–699 (2012).
    [CrossRef]
  4. P. Dong, L. Chen, C. Xie, L. L. Buhl, Y.-K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
    [CrossRef] [PubMed]
  5. P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
    [CrossRef]
  6. A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
    [CrossRef]
  7. P. J. Winzer, R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [CrossRef]
  8. C. R. Doerr, P. J. Winzer, Y.-K. Chen, S. Chandrasekhar, M. S. Rasras, L. Chen, T.-Y. Liow, K.-W. Ang, G.-Q. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol. 28(4), 520–525 (2010).
    [CrossRef]
  9. Y. Painchaud, M. Pelletier, M. Poulin, F. Pelletier, C. Latrasse, G. Robidoux, S. Savard, J.-F. Gagné, V. Trudel, M.-J. Picard, P. Poulin, P. Sirois, F. D’Amours, D. Asselin, S. Paquet, C. Paquet, M. Cur, M. Guy, M. Morsy-Osman, Q. Zhuge, X. Xu, M. Chagnon, and D. V. Plant, “Ultra-compact coherent receiver based on hybrid integration on silicon,” in Proc. OFC, paper OM2J.2, Anaheim, CA (2013).
    [CrossRef]
  10. B. Mikkelsen, “Challenges and key technologies for coherent metro 100G transceivers,” Lightwave Magazine, 14–18 (NOV/DEC 2012).
  11. A. H. Gnauck, P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  12. R. A. Griffin and A. C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” in Proc. OFC, paper WX6, Anaheim, CA (2002).
    [CrossRef]
  13. C. R. Doerr, L. Zhang, L. L. Buhl, J. H. Sinsky, A. H. Gnauck, P. J. Winzer, A. L. Adamiecki, and N. J. Sauer, “High-speed InP DQPSK receiver,” in Proc. OFC, paper PDP23, San Diego, CA (2008).
  14. L. Zimmermann, K. Voigt, G. Winzer, and K. Petermann, “Towards silicon on insulator dqpsk demodulators,” in Proc. OFC, paper OThB3, San Diego, CA (2010).
    [CrossRef]
  15. S. Faralli, K. N. Nguyen, J. D. Peters, D. T. Spencer, D. J. Blumenthal, J. E. Bowers, “Integrated hybrid Si/InGaAs 50 Gb/s DQPSK receiver,” Opt. Express 20(18), 19726–19734 (2012).
    [CrossRef] [PubMed]
  16. K. Xu, Z. Cheng, C. Y. Wong, H. K. Tsang, “Tunable integrated variable bit-rate DPSK silicon receiver,” Opt. Lett. 37(22), 4738–4740 (2012).
    [CrossRef] [PubMed]
  17. F. Gambini, S. Faralli, A. Malacarne, G. Meloni, G. Berrettini, G. Contestabile, L. Potì, and J. Klamkin, “A Silicon receiver for 100 Gb/s PDM-DQPSK signals,” in Proc. Photonics in Switching Conference, paper PD2–1, Kyoto, Japan (2013).
  18. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
    [CrossRef]
  19. S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” in Proc. Integrated Photonics Research Conference, paper IThE5, San Francisco, CA (2004).
  20. H. Kim, P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol. 21(9), 1887–1891 (2003).
    [CrossRef]

2013

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

2012

2010

2006

2005

2004

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

2003

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

H. Kim, P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol. 21(9), 1887–1891 (2003).
[CrossRef]

Ang, K.-W.

Baehr-Jones, T.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Baets, R.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Beckx, S.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bergman, K.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Bientsman, P.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Blumenthal, D. J.

Boegarts, W.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Bowers, J. E.

Buhl, L. L.

P. Dong, L. Chen, C. Xie, L. L. Buhl, Y.-K. Chen, “50-Gb/s silicon quadrature phase-shift keying modulator,” Opt. Express 20(19), 21181–21186 (2012).
[CrossRef] [PubMed]

C. R. Doerr, N. K. Fontaine, L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24(8), 697–699 (2012).
[CrossRef]

Chandrasekhar, S.

Chen, L.

Chen, Y.-K.

Cheng, Z.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Ding, R.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Doerr, C. R.

C. R. Doerr, N. K. Fontaine, L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24(8), 697–699 (2012).
[CrossRef]

C. R. Doerr, P. J. Winzer, Y.-K. Chen, S. Chandrasekhar, M. S. Rasras, L. Chen, T.-Y. Liow, K.-W. Ang, G.-Q. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol. 28(4), 520–525 (2010).
[CrossRef]

Dong, P.

Dumon, P.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Essiambre, R.-J.

Faralli, S.

Fontaine, N. K.

C. R. Doerr, N. K. Fontaine, L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24(8), 697–699 (2012).
[CrossRef]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Gnauck, A. H.

Gould, M.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

Hochberg, M.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Kim, H.

Li, Q.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Lim, A. E.-J.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Liow, T.-Y.

Liu, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Lo, G.-Q.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

C. R. Doerr, P. J. Winzer, Y.-K. Chen, S. Chandrasekhar, M. S. Rasras, L. Chen, T.-Y. Liow, K.-W. Ang, G.-Q. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol. 28(4), 520–525 (2010).
[CrossRef]

Luyassert, B.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Ma, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Nguyen, K. N.

Novack, A.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Padmaraju, K.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Peters, J. D.

Rasras, M. S.

Spencer, D. T.

Taillaert, D.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

Taubenblatt, M. A.

Tsang, H. K.

Van Campenhout, J.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Van Thourhourt, D.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Wiaux, V.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Winzer, P. J.

Wong, C. Y.

Wouters, J.

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Xie, C.

Xu, K.

Yang, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Zhang, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

IEEE Micro

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

C. R. Doerr, N. K. Fontaine, L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett. 24(8), 697–699 (2012).
[CrossRef]

P. Dumon, W. Boegarts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyassert, P. Bientsman, D. Van Thourhourt, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergman, A. E.-J. Lim, G.-Q. Lo, M. Hochberg, “A 30 GHz silicon photonics platform,” Proc. SPIE 8781, 878107 (2013).
[CrossRef]

Other

S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” in Proc. Integrated Photonics Research Conference, paper IThE5, San Francisco, CA (2004).

Y. Painchaud, M. Pelletier, M. Poulin, F. Pelletier, C. Latrasse, G. Robidoux, S. Savard, J.-F. Gagné, V. Trudel, M.-J. Picard, P. Poulin, P. Sirois, F. D’Amours, D. Asselin, S. Paquet, C. Paquet, M. Cur, M. Guy, M. Morsy-Osman, Q. Zhuge, X. Xu, M. Chagnon, and D. V. Plant, “Ultra-compact coherent receiver based on hybrid integration on silicon,” in Proc. OFC, paper OM2J.2, Anaheim, CA (2013).
[CrossRef]

B. Mikkelsen, “Challenges and key technologies for coherent metro 100G transceivers,” Lightwave Magazine, 14–18 (NOV/DEC 2012).

R. A. Griffin and A. C. Carter, “Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission,” in Proc. OFC, paper WX6, Anaheim, CA (2002).
[CrossRef]

C. R. Doerr, L. Zhang, L. L. Buhl, J. H. Sinsky, A. H. Gnauck, P. J. Winzer, A. L. Adamiecki, and N. J. Sauer, “High-speed InP DQPSK receiver,” in Proc. OFC, paper PDP23, San Diego, CA (2008).

L. Zimmermann, K. Voigt, G. Winzer, and K. Petermann, “Towards silicon on insulator dqpsk demodulators,” in Proc. OFC, paper OThB3, San Diego, CA (2010).
[CrossRef]

F. Gambini, S. Faralli, A. Malacarne, G. Meloni, G. Berrettini, G. Contestabile, L. Potì, and J. Klamkin, “A Silicon receiver for 100 Gb/s PDM-DQPSK signals,” in Proc. Photonics in Switching Conference, paper PD2–1, Kyoto, Japan (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic (top) and mask layout (bottom) of integrated Si PDM-DBPSK/DQPSK receiver. A close-up of the layout of the 2D grating coupler is shown.

Fig. 2
Fig. 2

ER for the X and Y ports of the 2D grating coupler.

Fig. 3
Fig. 3

Spectral response of MZ-DI.

Fig. 4
Fig. 4

Experimental measurement setup (BPG = bit pattern generation, MZM = Mach-Zehnder modulator, EDFA = erbium-doped fiber amplifier, BERT = bit error rate tester, BPF = band pass filter, VOA = variable optical attenuator).

Fig. 5
Fig. 5

Photograph of receiver under test.

Fig. 6
Fig. 6

BER vs. OSNR (resolution bandwidth = 0.1 nm) for varying data rate DBPSK signals.

Fig. 7
Fig. 7

Eye diagrams for (left) 20-Gbaud and (right) 22-Gbaud DBPSK signals.

Fig. 8
Fig. 8

BER vs. OSNR (resolution bandwidth = 0.1 nm) for 20 Gbaud and 25 Gbaud DQPSK signals.

Fig. 9
Fig. 9

Example eye diagrams for 20 Gbaud and 25 Gbaud signals.

Fig. 10
Fig. 10

20-Gbaud signal constellation diagrams for (left) X polarization and (right) Y polarization.

Tables (1)

Tables Icon

Table 1 Summary of Reported Direct Detection Advanced Modulation Format Receivers

Metrics