Abstract

We study the photoconductive effect of a p-i-p micro-heater integrated in a microring resonator. Due to the surface state absorption (SSA) and two photon absorption (TPA) of optical wave around 1550 nm, free carriers are generated in the silicon waveguide, leading to the modulation of silicon conductivity and thus the current flowing through it. The current-voltage (I-V) response of the p-i-p diode is dependent on the bias voltage and can be divided into ohmic-law regime and space-charge-limited regime. The resonance peak current is more sensitive to optical power in the ohmic-law regime. Such a phenomenon can also be utilized to monitor the optical power in the waveguide.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. P. Knights, Silicon photonics (Wiley Online Library, 2008).
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  3. M. Asghari, “Silicon photonics: a low cost integration platform for datacom and telecom applications,” Proc. OFC/NFOEC’2008, paper NThA4 (2008).
    [CrossRef]
  4. E. R. Fuchs, R. E. Kirchain, S. Liu, “The future of silicon photonics: Not so fast? Insights from 100G ethernet LAN transceivers,” J. Lightwave Technol. 29(15), 2319–2326 (2011).
    [CrossRef]
  5. H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
    [CrossRef]
  6. G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013).
    [CrossRef]
  7. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
    [CrossRef]
  8. X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
    [CrossRef]
  9. L. Zhou, A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
    [CrossRef] [PubMed]
  10. L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
    [CrossRef] [PubMed]
  11. N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
    [CrossRef] [PubMed]
  12. L. Chen, Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [CrossRef] [PubMed]
  13. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
    [CrossRef] [PubMed]
  14. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
    [CrossRef]
  15. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
    [CrossRef]
  16. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  17. C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express 19(16), 15429–15437 (2011).
    [CrossRef] [PubMed]
  18. L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013).
    [CrossRef]
  19. M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
    [CrossRef] [PubMed]
  20. H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
    [CrossRef]
  21. H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
    [CrossRef] [PubMed]
  22. H. Chen, A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
    [CrossRef]
  23. H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)
  24. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).
  25. S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
    [CrossRef]
  26. A. Grinberg, S. Luryi, “Space-charge-limited current and capacitance in double-junction diodes,” J. Appl. Phys. 61(3), 1181–1189 (1987).
    [CrossRef]
  27. N. Harrick, “Optical spectrum of the semiconductor surface states from frustrated total internal reflections,” Phys. Rev. 125(4), 1165–1170 (1962).
    [CrossRef]
  28. G. Samoggia, A. Nucciotti, G. Chiarotti, “Optical detection of surface states in Ge,” Phys. Rev. 144(2), 749–751 (1966).
    [CrossRef]
  29. F. Allen, G. Gobeli, “Work function, photoelectric threshold, and surface states of atomically clean silicon,” Phys. Rev. 127(1), 150–158 (1962).
    [CrossRef]
  30. V. Bortolani, C. Calandra, A. Sghedoni, “Surface states in Si,” Phys. Lett. A 34(3), 193–194 (1971).
    [CrossRef]
  31. G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971).
    [CrossRef]
  32. T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008).
    [CrossRef] [PubMed]
  33. H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
    [CrossRef]
  34. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
    [CrossRef] [PubMed]
  35. J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008, Chap. 3).
  36. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
    [CrossRef] [PubMed]

2013 (3)

G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013).
[CrossRef]

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013).
[CrossRef]

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

2012 (4)

L. Chen, Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[CrossRef] [PubMed]

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

2011 (2)

2010 (6)

2009 (1)

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

2008 (2)

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

2001 (1)

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

1987 (1)

A. Grinberg, S. Luryi, “Space-charge-limited current and capacitance in double-junction diodes,” J. Appl. Phys. 61(3), 1181–1189 (1987).
[CrossRef]

1971 (2)

V. Bortolani, C. Calandra, A. Sghedoni, “Surface states in Si,” Phys. Lett. A 34(3), 193–194 (1971).
[CrossRef]

G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971).
[CrossRef]

1966 (1)

G. Samoggia, A. Nucciotti, G. Chiarotti, “Optical detection of surface states in Ge,” Phys. Rev. 144(2), 749–751 (1966).
[CrossRef]

1962 (2)

F. Allen, G. Gobeli, “Work function, photoelectric threshold, and surface states of atomically clean silicon,” Phys. Rev. 127(1), 150–158 (1962).
[CrossRef]

N. Harrick, “Optical spectrum of the semiconductor surface states from frustrated total internal reflections,” Phys. Rev. 125(4), 1165–1170 (1962).
[CrossRef]

Absil, P.

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[CrossRef] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

Aernouts, T.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Agarwal, A.

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Allen, F.

F. Allen, G. Gobeli, “Work function, photoelectric threshold, and surface states of atomically clean silicon,” Phys. Rev. 127(1), 150–158 (1962).
[CrossRef]

Alloatti, L.

Asghari, M.

Baehr-Jones, T.

Baets, R.

Banwell, T.

Bogaerts, W.

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[CrossRef] [PubMed]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

Bortolani, V.

V. Bortolani, C. Calandra, A. Sghedoni, “Surface states in Si,” Phys. Lett. A 34(3), 193–194 (1971).
[CrossRef]

Calandra, C.

V. Bortolani, C. Calandra, A. Sghedoni, “Surface states in Si,” Phys. Lett. A 34(3), 193–194 (1971).
[CrossRef]

Cardenas, J.

Casalino, M.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Chen, H.

H. Chen, A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[CrossRef]

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

Chen, J.

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013).
[CrossRef]

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Chen, L.

Chen, S.

Chen, Y. K.

Chiaradia, P.

G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971).
[CrossRef]

Chiarotti, G.

G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971).
[CrossRef]

G. Samoggia, A. Nucciotti, G. Chiarotti, “Optical detection of surface states in Ge,” Phys. Rev. 144(2), 749–751 (1966).
[CrossRef]

Chu, T.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

Coppola, G.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Dong, P.

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Feng, D.

Feng, N.-N.

Foster, M. A.

Fuchs, E. R.

Fukuda, H.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Gaeta, A. L.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Geens, W.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Gobeli, G.

F. Allen, G. Gobeli, “Work function, photoelectric threshold, and surface states of atomically clean silicon,” Phys. Rev. 127(1), 150–158 (1962).
[CrossRef]

Goossens, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

Grinberg, A.

A. Grinberg, S. Luryi, “Space-charge-limited current and capacitance in double-junction diodes,” J. Appl. Phys. 61(3), 1181–1189 (1987).
[CrossRef]

Harrick, N.

N. Harrick, “Optical spectrum of the semiconductor surface states from frustrated total internal reflections,” Phys. Rev. 125(4), 1165–1170 (1962).
[CrossRef]

Hillerkuss, D.

Hiraki, T.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Hochberg, M.

Hu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Iodice, M.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Ishikawa, Y.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Jain, S.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Khurgin, J. B.

Kira, G.

Kirchain, R. E.

Komorowska, K.

Korn, D.

Kou, R.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Krishnamoorthy, A. V.

Kumar, V.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Kuramochi, E.

Lee, D. C.

Lepage, G.

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[CrossRef] [PubMed]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

Leuthold, J.

Levy, J. S.

Li, C.

Li, X.

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Li, Z.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

Liang, H.

Lipson, M.

Lira, H. L.

Liu, S.

Liu, Y.

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Lo, G. Q.

Lu, L.

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013).
[CrossRef]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Luff, J. B.

Luo, X.

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

Luryi, S.

A. Grinberg, S. Luryi, “Space-charge-limited current and capacitance in double-junction diodes,” J. Appl. Phys. 61(3), 1181–1189 (1987).
[CrossRef]

Mailis, S.

G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013).
[CrossRef]

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Masood, A.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

Mehra, A.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Menendez, R.

Mertens, R.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Mitsugi, S.

Morton, P.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Nannarone, S.

G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971).
[CrossRef]

Nishi, H.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Notomi, M.

Nucciotti, A.

G. Samoggia, A. Nucciotti, G. Chiarotti, “Optical detection of surface states in Ge,” Phys. Rev. 144(2), 749–751 (1966).
[CrossRef]

Pantouvaki, M.

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[CrossRef] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

Pastore, R.

G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971).
[CrossRef]

Poitras, C. B.

Poon, A. W.

H. Chen, A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[CrossRef]

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

L. Zhou, A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
[CrossRef] [PubMed]

Poortmans, J.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Qian, W.

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Reed, G.

G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013).
[CrossRef]

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Rendina, I.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Salem, R.

Samoggia, G.

G. Samoggia, A. Nucciotti, G. Chiarotti, “Optical detection of surface states in Ge,” Phys. Rev. 144(2), 749–751 (1966).
[CrossRef]

Scherer, A.

Sghedoni, A.

V. Bortolani, C. Calandra, A. Sghedoni, “Surface states in Si,” Phys. Lett. A 34(3), 193–194 (1971).
[CrossRef]

Shafiiha, R.

Sherwood-Droz, N.

Shinya, A.

Sirleto, L.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Song, J. H.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Sun, X.

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Takeda, K.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Tanabe, T.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Toliver, P.

Tsang, H. K.

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Tsuchizawa, T.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Turner-Foster, A. C.

Van Campenhout, J.

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[CrossRef] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

Van Thourhout, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

Verheyen, P.

H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Opt. Lett. 37(22), 4681–4683 (2012).
[CrossRef] [PubMed]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

Wada, K.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Wale, M. J.

G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013).
[CrossRef]

Willander, M.

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

Willner, A.

G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013).
[CrossRef]

Woodward, T. K.

Xiao, X.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

Xie, J.

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Xiong, K.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

Xu, H.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

Yamada, K.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Yamamoto, T.

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

Yu, H.

Yu, J.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

Yu, M.

Yu, Y.

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

Zhang, B.

Zhang, H.

Zhang, J.

Zhang, X.

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013).
[CrossRef]

Zheng, X.

Zhou, L.

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013).
[CrossRef]

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

L. Zhou, A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
[CrossRef] [PubMed]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Zhu, H.

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

Zou, Z.

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

Appl. Phys. Lett. (2)

H. Chen, X. Luo, A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a pin diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

H. Chen, A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

G. Reed, S. Mailis, M. J. Wale, A. Willner, “Introduction to the issue on optical modulators—Technologies and applications,” IEEE J. Sel. Top. Quantum Electron. 19, 1–3 (2013).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. J. (1)

L. Zhou, X. Zhang, L. Lu, J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5(4), 6601211 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[CrossRef]

X. Xiao, X. Li, H. Xu, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu, “44Gbit/s Silicon Microring Modulators based on Zigzag PN Junctions,” IEEE Photon. Technol. Lett. 24(19), 1712–1714 (2012).
[CrossRef]

J. Appl. Phys. (2)

S. Jain, W. Geens, A. Mehra, V. Kumar, T. Aernouts, J. Poortmans, R. Mertens, M. Willander, “Injection-and space charge limited-currents in doped conducting organic materials,” J. Appl. Phys. 89(7), 3804–3810 (2001).
[CrossRef]

A. Grinberg, S. Luryi, “Space-charge-limited current and capacitance in double-junction diodes,” J. Appl. Phys. 61(3), 1181–1189 (1987).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (10)

L. Chen, Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[CrossRef] [PubMed]

L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21(8), 9447–9456 (2013).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

L. Zhou, A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008).
[CrossRef] [PubMed]

A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18(4), 3582–3591 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[CrossRef] [PubMed]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26525–26534 (2010).
[CrossRef] [PubMed]

C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express 19(16), 15429–15437 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Lett. A (1)

V. Bortolani, C. Calandra, A. Sghedoni, “Surface states in Si,” Phys. Lett. A 34(3), 193–194 (1971).
[CrossRef]

Phys. Rev. (3)

N. Harrick, “Optical spectrum of the semiconductor surface states from frustrated total internal reflections,” Phys. Rev. 125(4), 1165–1170 (1962).
[CrossRef]

G. Samoggia, A. Nucciotti, G. Chiarotti, “Optical detection of surface states in Ge,” Phys. Rev. 144(2), 749–751 (1966).
[CrossRef]

F. Allen, G. Gobeli, “Work function, photoelectric threshold, and surface states of atomically clean silicon,” Phys. Rev. 127(1), 150–158 (1962).
[CrossRef]

Phys. Rev. B (1)

G. Chiarotti, S. Nannarone, R. Pastore, P. Chiaradia, “Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si,” Phys. Rev. B 4(10), 3398–3402 (1971).
[CrossRef]

Semicond. Sci. Technol. (1)

H. K. Tsang, Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Sensors (Basel) (1)

M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors (Basel) 10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Other (8)

M. Asghari, “Silicon photonics: a low cost integration platform for datacom and telecom applications,” Proc. OFC/NFOEC’2008, paper NThA4 (2008).
[CrossRef]

H. Fukuda, K. Takeda, T. Hiraki, T. Tsuchizawa, H. Nishi, R. Kou, Y. Ishikawa, K. Wada, T. Yamamoto, K. Yamada, “Large-scale silicon photonics integrated circuits for interconnect and telecom applications,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 130–131.
[CrossRef]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics (GFP), (IEEE, 2013), 83–84.
[CrossRef]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, W. Bogaerts, “CMOS-compatible tungsten heaters for silicon photonic waveguides,” in 9th International Conference on Group IV Photonics (GFP), (IEEE, 2012), 234–236.
[CrossRef]

H. Zhu, L. Zhou, X. Sun, J. Xie, Z. Zou, L. Lu, X. Li, J. Chen, “Photocurrent generation in a silicon waveguide integrated with periodically interleaved pn junctions,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (IEEE, 2013)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).

J. Heebner, R. Grover, T. Ibrahim, and T. A. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, 2008, Chap. 3).

G. T. Reed and A. P. Knights, Silicon photonics (Wiley Online Library, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical microscope image of the fabricated p-i-p diode embedded microring resonator. (b) Schematic cross-section of the p-i-p diode. The critical dimensions are labeled.

Fig. 2
Fig. 2

(a) and (b) Energy-band diagrams along the p-i-p diode at (a) 1V and (b) 8V biases. (c) Electric field distribution in the p-i-p diode at various biases.

Fig. 3
Fig. 3

(a) Measured transmission spectrum of the microring resonator. (b) Fitting of the resonance spectrum with theoretical modeling. (c) and (d) Measured current as a function of wavelength at various optical power levels. The bias voltage Vd is 1V in (c) and 7 V in (d).

Fig. 4
Fig. 4

(a) Current peak wavelength versus waveguide coupled optical power for various bias voltages. (b) and (c) Measured photoconductive current versus optical power. (b) is at the off-resonance (1554 nm) wavelength, and (c) is at the on-resonance (current peak) wavelength.

Fig. 5
Fig. 5

Peak current-voltage curves of the p-i-p diode for various optical power levels.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J= 9 8 ε si ε 0 μ V 2 W 3
V th = 8q p 0 W 2 9 ε si ε 0
G opt =( α SSA P A eff + 1 2 β TPA P 2 A eff 2 ) λ hc
Δn=Δp= G opt τ
σ=q μ n Δn+q μ p ( p 0 +Δp )
T= t 2 2 a 2 2 t 1 t 2 acosϕ+ t 1 2 12 t 1 t 2 acosϕ+ ( t 1 t 2 a ) 2
B= ( 1 t 2 ) t 2 a 2 12 t 2 acosϕ+ ( t 2 a ) 2

Metrics