Abstract

In this work, we present GaInAs/AlAs/AlInAs quantum cascade lasers emitting from 3.2 to 3.4 μm. Single-mode emission is obtained using buried distributed-feedback gratings fabricated using standard deep-UV contact lithography. This technique can easily be transferred to industrial production. Devices with single-mode emission down to 3.19 μm were achieved with peak power of up to 250 mW at −20 °C. A tuning range of 11 cm−1 was obtained by changing the device temperature between −30 °C and 20 °C.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. NIST, “Nist chemistry webbook,”.
  2. C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
    [CrossRef]
  3. G. Belenky, L. Shterengas, G. Kipshidze, T. Hosoda, “Type-I Diode Lasers for Spectral Region Above 3 μ m,” IEEE J. Sel. Topics Quantum Electron. 17, 1426–1434 (2011).
    [CrossRef]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  5. M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05μ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
    [CrossRef]
  6. A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
    [CrossRef]
  7. A. Bismuto, M. Beck, J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
    [CrossRef]
  8. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
    [CrossRef]
  9. J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
    [CrossRef]
  10. E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
    [CrossRef]
  11. S. Riedi, A. Hugi, A. Bismuto, M. Beck, J. Faist, “Broadband external cavity tuning in the 3–4 μ m window,” Appl. Phys. Lett. 103, 031108 (2013).
    [CrossRef]
  12. J. Jágerská, B. Tuzson, H. Looser, A. Bismuto, J. Faist, H. Prinz, L. Emmenegger, “Highly sensitive and fast detection of propane-butane using a 3 μ m quantum cascade laser,” Appl. Opt. 52, 4613–4619 (2013).
    [CrossRef]
  13. A. Bismuto, R. Terazzi, M. Beck, J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
    [CrossRef]
  14. W. Streifer, D. R. Scifres, R. Burnham, “Coupling Coefficients for Distributed Feedback Single- and Double-Heterostructure Diode Lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
    [CrossRef]
  15. H. Haus, C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
    [CrossRef]
  16. A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).

2013

2012

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

2011

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

A. Bismuto, M. Beck, J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

G. Belenky, L. Shterengas, G. Kipshidze, T. Hosoda, “Type-I Diode Lasers for Spectral Region Above 3 μ m,” IEEE J. Sel. Topics Quantum Electron. 17, 1426–1434 (2011).
[CrossRef]

2010

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

2007

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05μ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

1976

H. Haus, C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

1975

W. Streifer, D. R. Scifres, R. Burnham, “Coupling Coefficients for Distributed Feedback Single- and Double-Heterostructure Diode Lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[CrossRef]

Abell, J.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Bai, Y.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

Beck, M.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, J. Faist, “Broadband external cavity tuning in the 3–4 μ m window,” Appl. Phys. Lett. 103, 031108 (2013).
[CrossRef]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

A. Bismuto, M. Beck, J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

Belenky, G.

G. Belenky, L. Shterengas, G. Kipshidze, T. Hosoda, “Type-I Diode Lasers for Spectral Region Above 3 μ m,” IEEE J. Sel. Topics Quantum Electron. 17, 1426–1434 (2011).
[CrossRef]

Bewley, W. W.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Bismuto, A.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, J. Faist, “Broadband external cavity tuning in the 3–4 μ m window,” Appl. Phys. Lett. 103, 031108 (2013).
[CrossRef]

J. Jágerská, B. Tuzson, H. Looser, A. Bismuto, J. Faist, H. Prinz, L. Emmenegger, “Highly sensitive and fast detection of propane-butane using a 3 μ m quantum cascade laser,” Appl. Opt. 52, 4613–4619 (2013).
[CrossRef]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

A. Bismuto, M. Beck, J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

Burnham, R.

W. Streifer, D. R. Scifres, R. Burnham, “Coupling Coefficients for Distributed Feedback Single- and Double-Heterostructure Diode Lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[CrossRef]

Canedy, C. L.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Chen, J.

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Cockburn, J. W.

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

Commin, J. P.

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

Dressler, S.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05μ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Emmenegger, L.

Faist, J.

J. Jágerská, B. Tuzson, H. Looser, A. Bismuto, J. Faist, H. Prinz, L. Emmenegger, “Highly sensitive and fast detection of propane-butane using a 3 μ m quantum cascade laser,” Appl. Opt. 52, 4613–4619 (2013).
[CrossRef]

S. Riedi, A. Hugi, A. Bismuto, M. Beck, J. Faist, “Broadband external cavity tuning in the 3–4 μ m window,” Appl. Phys. Lett. 103, 031108 (2013).
[CrossRef]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

A. Bismuto, M. Beck, J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Gmachl, C.

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

Haus, H.

H. Haus, C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

Hinkov, B.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

Hosoda, T.

G. Belenky, L. Shterengas, G. Kipshidze, T. Hosoda, “Type-I Diode Lasers for Spectral Region Above 3 μ m,” IEEE J. Sel. Topics Quantum Electron. 17, 1426–1434 (2011).
[CrossRef]

Hugi, A.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, J. Faist, “Broadband external cavity tuning in the 3–4 μ m window,” Appl. Phys. Lett. 103, 031108 (2013).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Jágerská, J.

Kennedy, K.

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

Kim, C. S.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Kim, M.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Kipshidze, G.

G. Belenky, L. Shterengas, G. Kipshidze, T. Hosoda, “Type-I Diode Lasers for Spectral Region Above 3 μ m,” IEEE J. Sel. Topics Quantum Electron. 17, 1426–1434 (2011).
[CrossRef]

Krysa, A. B.

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

Looser, H.

Masselink, W. T.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05μ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Merritt, C. D.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Meyer, J. R.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Mujagic, E.

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

Nida, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

Prinz, H.

Razeghi, M.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

Revin, D. G.

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

Riedi, S.

S. Riedi, A. Hugi, A. Bismuto, M. Beck, J. Faist, “Broadband external cavity tuning in the 3–4 μ m window,” Appl. Phys. Lett. 103, 031108 (2013).
[CrossRef]

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

Schrenk, W.

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

Schwarzer, C.

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

Scifres, D. R.

W. Streifer, D. R. Scifres, R. Burnham, “Coupling Coefficients for Distributed Feedback Single- and Double-Heterostructure Diode Lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[CrossRef]

Semtsiv, M. P.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05μ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Shank, C.

H. Haus, C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

Shterengas, L.

G. Belenky, L. Shterengas, G. Kipshidze, T. Hosoda, “Type-I Diode Lasers for Spectral Region Above 3 μ m,” IEEE J. Sel. Topics Quantum Electron. 17, 1426–1434 (2011).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

Strasser, G.

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

Streifer, W.

W. Streifer, D. R. Scifres, R. Burnham, “Coupling Coefficients for Distributed Feedback Single- and Double-Heterostructure Diode Lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[CrossRef]

Terazzi, R.

A. Bismuto, R. Terazzi, M. Beck, J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

Tsao, S.

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

Tuzson, B.

Vurgaftman, I.

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

Wienold, M.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05μ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).

Zhang, S. Y.

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Bismuto, R. Terazzi, M. Beck, J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

S. Riedi, A. Hugi, A. Bismuto, M. Beck, J. Faist, “Broadband external cavity tuning in the 3–4 μ m window,” Appl. Phys. Lett. 103, 031108 (2013).
[CrossRef]

C. S. Kim, M. Kim, J. Abell, W. W. Bewley, C. D. Merritt, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Mid-infrared distributed-feedback interband cascade lasers with continuous-wave single-mode emission to 80 °C,” Appl. Phys. Lett. 101, 061104 (2012).
[CrossRef]

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05μ m) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

A. Bismuto, M. Beck, J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μ m above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, “Room temperature continuous wave operation of lambda 3–3.2μm quantum cascade lasers,” Appl. Phys. Lett. 101, 241110 (2012).
[CrossRef]

J. P. Commin, K. Kennedy, D. G. Revin, S. Y. Zhang, A. B. Krysa, J. W. Cockburn, “λ≈ 3.36 μ m room temperature InGaAs/AlAs(Sb) quantum cascade lasers with third order distributed feedback grating,” Appl. Phys. Lett. 97, 111113 (2010).
[CrossRef]

IEEE J. Quantum Electron.

W. Streifer, D. R. Scifres, R. Burnham, “Coupling Coefficients for Distributed Feedback Single- and Double-Heterostructure Diode Lasers,” IEEE J. Quantum Electron. 11, 867–873 (1975).
[CrossRef]

H. Haus, C. Shank, “Antisymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

G. Belenky, L. Shterengas, G. Kipshidze, T. Hosoda, “Type-I Diode Lasers for Spectral Region Above 3 μ m,” IEEE J. Sel. Topics Quantum Electron. 17, 1426–1434 (2011).
[CrossRef]

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, J. Faist, “Sb-free quantum cascade lasers in the 3 μ m spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

E. Mujagić, C. Schwarzer, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring-cavity surface-emitting lasers as a building block for tunable and coherent quantum cascade laser arrays,” Semicond. Sci. Technol. 26, 014019 (2011).
[CrossRef]

Other

A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).

NIST, “Nist chemistry webbook,”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM pictures. Left: A laser facet with a ridge width of 4.2 μm. Right: A cross section of the waveguide along the ridge direction. It shows the grating on top of the active region with an etching depth of 160 nm.

Fig. 2
Fig. 2

Room-temperature spontaneous emission of the active region(blue) showing a FWHM of 621 cm−1 at 15.8 V. Additionally lasing spectra of some devices in pulsed operation under different driving conditions at 0 °C are presented.

Fig. 3
Fig. 3

Top: Transfer-matrix simulation of the transmission and threshold of a 2 mm long dual-grating DFB with an effective periodicity of 515 nm and effective refractive index of 3.165. Bottom: Measured amplified spontaneous emission of a 2.6 mm × 4 μm lasing device with the same dual-grating as the simulation.

Fig. 4
Fig. 4

Plot of the quarter-wave shift mode wavelengths versus grating period showing the fundamental mode (black), 2nd order dual-grating modes (light blue and dark blue) and 2nd order lateral modes (red, green). The purple crosses mark the lasing wavelengths.

Fig. 5
Fig. 5

Simulation of the optical mode intensity along the ridge for a 412 μm long device made of periodicities of 500 nm and 520 nm with a superperiod of 20.6 μm and an effective periodicity of 515 nm. Red: Data evaluated at λ = 3.2594 μm which corresponds to the fundamental quarter-wave shift mode. Blue and Green: Evaluation at λ = 3.1803 μm and λ = 3.3436 μm which correspond to the 2nd order dual-grating mode.

Fig. 6
Fig. 6

Spectra of an device emitting at 3.3 μm for various submount temperatures.

Fig. 7
Fig. 7

Power-current-voltage characteristics of the device shown in Fig. 6. The slope efficiency is 284 m W A and the threshold current density is 4.7 k A c m 2 at −20°C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff i * ( 1 Λ + j * 1 L superperiod ) 1 = 2 n eff i * Λ ( 1 + j * 1 N Λ ) 1

Metrics