Abstract

In this paper we study the laser-induced modification of optical properties of nanocomposite based on cadmium sulphide quantum dots encapsulated into thiomalic acid shell which were embedded into a porous silica matrix. We found red shift of luminescence of the nanocomposite when exposed to laser radiation at λ = 405 nm. Using pump-probe method and Small-Angle X-ray Scattering technique it was found that laser radiation at λ = 405 nm also increases the absorption coefficient of the nanocomposite in 15 times due to agglomeration of quantum dots. The modification of absorption properties is fully reversible.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
    [CrossRef] [PubMed]
  2. U. Wiedemann, W. Alt, D. Meschede, “Switching photochromic molecules adsorbed on optical microfibres,” Opt. Express 20(12), 12710–12720 (2012).
    [CrossRef] [PubMed]
  3. Y. Huang, S.-T. Wu, Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12(5), 895–906 (2004).
    [CrossRef] [PubMed]
  4. S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
    [CrossRef] [PubMed]
  5. H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
    [CrossRef] [PubMed]
  6. D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010).
    [CrossRef]
  7. K. M. Sergeeva, I. V. Postnova, Yu. A. Shchipunov, “Incorporation of Quantum Dots into a Silica matrix using a compatible precursor,” Colloid J. 75(6), 714–719 (2013).
    [CrossRef]
  8. Q. Xiao, C. Xiao, “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method,” Appl. Surf. Sci. 255(16), 7111–7114 (2009).
    [CrossRef]
  9. E. Ruiz-Hitzky, K. Ariga, and Yu. M. Lvov, Bio-inorganic Hybrid Nanomaterials (Weinheim, 2007), Chap. 3.
  10. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering, G.W. Taylor, ed. (Plenum Press, 1987).
  11. P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
    [CrossRef]
  12. D. I. Svergun, “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” J. Appl. Cryst. 25(4), 495–503 (1992).
    [CrossRef]
  13. D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76(6), 2879–2886 (1999).
    [CrossRef] [PubMed]
  14. J. Tang, R. A. Marcus, “Photoinduced spectral diffusion and diffusion-controlled electron transfer reactions in fluorescence intermittency of quantum dots,” J. Chin. Chem. Soc. 53, 1–13 (2006).
  15. A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
    [CrossRef]
  16. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
    [CrossRef] [PubMed]

2013 (1)

K. M. Sergeeva, I. V. Postnova, Yu. A. Shchipunov, “Incorporation of Quantum Dots into a Silica matrix using a compatible precursor,” Colloid J. 75(6), 714–719 (2013).
[CrossRef]

2012 (1)

2011 (2)

K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, A. J. Taylor, S. R. J. Brueck, “Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device,” Opt. Express 19(5), 3973–3983 (2011).
[CrossRef] [PubMed]

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

2010 (2)

D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010).
[CrossRef]

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

2009 (1)

Q. Xiao, C. Xiao, “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method,” Appl. Surf. Sci. 255(16), 7111–7114 (2009).
[CrossRef]

2006 (3)

H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

J. Tang, R. A. Marcus, “Photoinduced spectral diffusion and diffusion-controlled electron transfer reactions in fluorescence intermittency of quantum dots,” J. Chin. Chem. Soc. 53, 1–13 (2006).

2004 (1)

2003 (1)

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
[CrossRef]

1999 (1)

D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76(6), 2879–2886 (1999).
[CrossRef] [PubMed]

1992 (1)

D. I. Svergun, “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” J. Appl. Cryst. 25(4), 495–503 (1992).
[CrossRef]

Alt, W.

Bawendi, M.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Bera, D.

D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010).
[CrossRef]

Brueck, S. R. J.

Bulovic, V.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Chang, L.-Y.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Dani, K. M.

Du, Y. M.

H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

Gong, H. M.

H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

Gradecak, S.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Holloway, P. H.

D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010).
[CrossRef]

Hou, Y.

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Huang, Y.

Jiang, Y.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Jie, J. S.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Koch, M. H. J.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
[CrossRef]

Konarev, P. V.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
[CrossRef]

Ku, Z.

Lee, S. T.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Li, Y. Q.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Lim, S.-K.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Marcus, R. A.

J. Tang, R. A. Marcus, “Photoinduced spectral diffusion and diffusion-controlled electron transfer reactions in fluorescence intermittency of quantum dots,” J. Chin. Chem. Soc. 53, 1–13 (2006).

Meng, X. M.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Meschede, D.

Postnova, I. V.

K. M. Sergeeva, I. V. Postnova, Yu. A. Shchipunov, “Incorporation of Quantum Dots into a Silica matrix using a compatible precursor,” Colloid J. 75(6), 714–719 (2013).
[CrossRef]

Prasankumar, R. P.

Qian, L.

D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010).
[CrossRef]

Qu, S.

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Ren, S.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Sergeeva, K. M.

K. M. Sergeeva, I. V. Postnova, Yu. A. Shchipunov, “Incorporation of Quantum Dots into a Silica matrix using a compatible precursor,” Colloid J. 75(6), 714–719 (2013).
[CrossRef]

Shchipunov, Yu. A.

K. M. Sergeeva, I. V. Postnova, Yu. A. Shchipunov, “Incorporation of Quantum Dots into a Silica matrix using a compatible precursor,” Colloid J. 75(6), 714–719 (2013).
[CrossRef]

Smith, M.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Sokolova, A. V.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
[CrossRef]

Svergun, D. I.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
[CrossRef]

D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76(6), 2879–2886 (1999).
[CrossRef] [PubMed]

D. I. Svergun, “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” J. Appl. Cryst. 25(4), 495–503 (1992).
[CrossRef]

Tan, F.

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Tang, A.

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Tang, J.

J. Tang, R. A. Marcus, “Photoinduced spectral diffusion and diffusion-controlled electron transfer reactions in fluorescence intermittency of quantum dots,” J. Chin. Chem. Soc. 53, 1–13 (2006).

Taylor, A. J.

Teng, F.

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Tseng, T.-K.

D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010).
[CrossRef]

Upadhya, P. C.

Volkov, V. V.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
[CrossRef]

Wang, Q. Q.

H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

Wang, X.-H.

H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

Wang, Y.

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Wang, Z.

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Wiedemann, U.

Wu, S.-T.

Xiao, C.

Q. Xiao, C. Xiao, “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method,” Appl. Surf. Sci. 255(16), 7111–7114 (2009).
[CrossRef]

Xiao, Q.

Q. Xiao, C. Xiao, “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method,” Appl. Surf. Sci. 255(16), 7111–7114 (2009).
[CrossRef]

Zhang, W. J.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Zhao, J.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Zhao, N.

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

Zhao, Y.

Appl. Phys. Lett. (1)

A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang, “Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol,” Appl. Phys. Lett. 96(16), 163112 (2010).
[CrossRef]

Appl. Surf. Sci. (1)

Q. Xiao, C. Xiao, “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method,” Appl. Surf. Sci. 255(16), 7111–7114 (2009).
[CrossRef]

Biophys. J. (1)

D. I. Svergun, “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophys. J. 76(6), 2879–2886 (1999).
[CrossRef] [PubMed]

Colloid J. (1)

K. M. Sergeeva, I. V. Postnova, Yu. A. Shchipunov, “Incorporation of Quantum Dots into a Silica matrix using a compatible precursor,” Colloid J. 75(6), 714–719 (2013).
[CrossRef]

J. Appl. Cryst. (2)

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” J. Appl. Cryst. 36(5), 1277–1282 (2003).
[CrossRef]

D. I. Svergun, “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” J. Appl. Cryst. 25(4), 495–503 (1992).
[CrossRef]

J. Chem. Phys. (1)

H. M. Gong, X.-H. Wang, Y. M. Du, Q. Q. Wang, “Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots,” J. Chem. Phys. 125(2), 024707 (2006).
[CrossRef] [PubMed]

J. Chin. Chem. Soc. (1)

J. Tang, R. A. Marcus, “Photoinduced spectral diffusion and diffusion-controlled electron transfer reactions in fluorescence intermittency of quantum dots,” J. Chin. Chem. Soc. 53, 1–13 (2006).

Materials. (1)

D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, “Quantum dots and their multimodal applications: A review,” Materials. 3(4), 2260–2345 (2010).
[CrossRef]

Nano Lett. (2)

S. Ren, L.-Y. Chang, S.-K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradecak, “Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires,” Nano Lett. 11(9), 3998–4002 (2011).
[CrossRef] [PubMed]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Other (2)

E. Ruiz-Hitzky, K. Ariga, and Yu. M. Lvov, Bio-inorganic Hybrid Nanomaterials (Weinheim, 2007), Chap. 3.

L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering, G.W. Taylor, ed. (Plenum Press, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical properties of NcQD before and after pump radiation exposure: (a) absorbance spectrums; (b) luminescence spectrums (1 – unexposed area; 2 – exposed area; 3 – bare THEOS). Inserts shows exposed area of NcQD immediately after expose ((a) upper), since 12 hours after exposure ((a) lower). At a 12 hours after exposure image ((a) lower insert) there is almost unseen modified area, but under UV lighting (insert at Fig. 1(b)) this area is observable.

Fig. 2
Fig. 2

Experimental pump-probe setup.

Fig. 3
Fig. 3

Photodynamic control of probe beam (λ = 633 nm) by pump beam (λ = 405 nm) and its dependence of pump beam’s power.

Fig. 4
Fig. 4

The resulting spatial model of a silica nanocomposite based on cadmium sulphide quantum dots under exposure to UV radiation. (a) Reconstructed shapes of NcQD clusters (I) before exposure, (II) exposure dose 40 J/cm2, (III) relaxation: SAXS experimental curve, scattering curve from the ab initio model and spatial model of NcQD calculated by the DAMMIN software (lower insert). The top rihgt insert shows 3-D model of the NcQD calculated by CRYSOL program; (b) schematic representation of NcQD clusters formation

Tables (1)

Tables Icon

Table 1 Variations of D and L of NcQD Scattering Centers under Exposure of Pump Radiation

Metrics