Abstract

A flexible TWDM PON system is proposed which allows pay-as-you-grow in capacity, supports load balancing among different ODNs, and achieves significant power saving at OLT. Integrated OLT transceiver in enhanced CFP module and low-cost tunable ONU transceiver in SFP+ module are developed, for the first time, for cost effective deployment of TWDM PONs. System experiments demonstrate error free performance with 36 dB power budget in a flexible TWDM PON test bed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ITU-T recommendations, G.984 series, “Gigabit-capable passive optical networks (GPON).” http://www.itu.int/ITU-T/recommendations/index.aspx?ser=G .
  2. IEEE 802.3ah, 2004. http://standards.ieee.org/findstds/standard/802.3ah-2004.html .
  3. ITU-T recommendations, G.987 series, “10-Gigabit-capable passive optical networks (XG-PON).” http://www.itu.int/ITU-T/recommendations/index.aspx?ser=G .
  4. IEEE 802.3av, 2009. http://standards.ieee.org/findstds/standard/802.3av-2009.html .
  5. J.-Y. Kim, S.-H. Yoo, S.-R. Moon, D. C. Kim, and C.-H. Lee, “400 Gb/s (40 × 10 Gb/s) ASE injection seeded WDM-PON based on SOA-REAM,” in Optical Fiber Communication Conference Technical Digest (OFC2013), paper OW4D.4 (2013).
  6. Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40 Gb/s time and wavelength division multiplexed passive optical network prototype system,” in Optical Fiber Communication Conference Technical Digest (OFC2012), paper PDP5D.7 (2012).
  7. D. Qian, N. Cvijetic, J. Hu, T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol. 28(4), 484–493 (2010).
    [CrossRef]
  8. N. Kataoka, N. Wada, G. Cincotti, and K.-i. Kitayama, “2.56 Tbps (40-Gbps × 8-wavelength × 4-OC × 2-POL) asynchronous WDM-OCDMA-PON using a multi-port encoder/decoder,” in Technical Digest of European Conference on Optical Communication (ECOC2011), paper Th.13.B.6 (2011).
    [CrossRef]
  9. FSAN next generation PON task group, http://www.fsan.org/task-groups/ngpon/ .
  10. Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental demonstration of a symmetric 40-Gb/s TWDM-PON,” in Optical Fiber Communication Conference Technical Digest, paper NTh4F.3 (2013).
  11. P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
    [CrossRef]
  12. G.989 series, “40-Gigabit-capable passive optical networks,” ITU-T draft recommendation (2013).
  13. K. Hara, H. Nakamura, S. Kimura, M. Yoshino, S. Nishihara, S. Tamaki, J. Kani, N. Yoshimoto, and H. Hadama, “Flexible load balancing technique using dynamic wavelength bandwidth allocation (DWBA) toward 100Gbit/s-class-WDM/TDM-PON,” in Technical Digest of European Conference on Optical Communication (ECOC2012), paper Tu.3.B.2 (2010).
    [CrossRef]
  14. K. Taguchi, H. Nakamura, K. Asaka, T. Mizuno, Y. Hashizume, T. Yamada, M. Ito., H. Takahashi, S. Kimura, and N. Yoshimoto, “40-km reach symmetric 40-Gbit/s λ-tunable WDM/TDM-PON using synchronized gain-clamping SOA,” in Optical Fiber Communication Conference Technical Digest (OFC2013), paper OW4D.6 (2013).
  15. J.-I. Kani, “Power saving techniques and mechanisms for optical access networks systems,” J. Lightwave Technol. 31(4), 563–570 (2013).
    [CrossRef]
  16. W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Networking 2(1), 1–15 (1994).
    [CrossRef]

2013 (1)

2012 (1)

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

2010 (1)

1994 (1)

W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Networking 2(1), 1–15 (1994).
[CrossRef]

Chanclou, P.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Cui, A.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Cvijetic, N.

Geilhardt, F.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Hu, J.

Kani, J.-I.

Leland, W. E.

W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Networking 2(1), 1–15 (1994).
[CrossRef]

Nakamura, H.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Nesset, D.

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

Qian, D.

Taqqu, M. S.

W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Networking 2(1), 1–15 (1994).
[CrossRef]

Wang, T.

Willinger, W.

W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Networking 2(1), 1–15 (1994).
[CrossRef]

Wilson, D. V.

W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Networking 2(1), 1–15 (1994).
[CrossRef]

IEEE Netw. (1)

P. Chanclou, A. Cui, F. Geilhardt, H. Nakamura, D. Nesset, “Network operator requirements for the next generation of optical access networks,” IEEE Netw. 26(2), 8–14 (2012).
[CrossRef]

IEEE/ACM Trans. Networking (1)

W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Networking 2(1), 1–15 (1994).
[CrossRef]

J. Lightwave Technol. (2)

Other (12)

N. Kataoka, N. Wada, G. Cincotti, and K.-i. Kitayama, “2.56 Tbps (40-Gbps × 8-wavelength × 4-OC × 2-POL) asynchronous WDM-OCDMA-PON using a multi-port encoder/decoder,” in Technical Digest of European Conference on Optical Communication (ECOC2011), paper Th.13.B.6 (2011).
[CrossRef]

FSAN next generation PON task group, http://www.fsan.org/task-groups/ngpon/ .

Z. Li, L. Yi, M. Bi, J. Li, H. He, X. Yang, and W. Hu, “Experimental demonstration of a symmetric 40-Gb/s TWDM-PON,” in Optical Fiber Communication Conference Technical Digest, paper NTh4F.3 (2013).

ITU-T recommendations, G.984 series, “Gigabit-capable passive optical networks (GPON).” http://www.itu.int/ITU-T/recommendations/index.aspx?ser=G .

IEEE 802.3ah, 2004. http://standards.ieee.org/findstds/standard/802.3ah-2004.html .

ITU-T recommendations, G.987 series, “10-Gigabit-capable passive optical networks (XG-PON).” http://www.itu.int/ITU-T/recommendations/index.aspx?ser=G .

IEEE 802.3av, 2009. http://standards.ieee.org/findstds/standard/802.3av-2009.html .

J.-Y. Kim, S.-H. Yoo, S.-R. Moon, D. C. Kim, and C.-H. Lee, “400 Gb/s (40 × 10 Gb/s) ASE injection seeded WDM-PON based on SOA-REAM,” in Optical Fiber Communication Conference Technical Digest (OFC2013), paper OW4D.4 (2013).

Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40 Gb/s time and wavelength division multiplexed passive optical network prototype system,” in Optical Fiber Communication Conference Technical Digest (OFC2012), paper PDP5D.7 (2012).

G.989 series, “40-Gigabit-capable passive optical networks,” ITU-T draft recommendation (2013).

K. Hara, H. Nakamura, S. Kimura, M. Yoshino, S. Nishihara, S. Tamaki, J. Kani, N. Yoshimoto, and H. Hadama, “Flexible load balancing technique using dynamic wavelength bandwidth allocation (DWBA) toward 100Gbit/s-class-WDM/TDM-PON,” in Technical Digest of European Conference on Optical Communication (ECOC2012), paper Tu.3.B.2 (2010).
[CrossRef]

K. Taguchi, H. Nakamura, K. Asaka, T. Mizuno, Y. Hashizume, T. Yamada, M. Ito., H. Takahashi, S. Kimura, and N. Yoshimoto, “40-km reach symmetric 40-Gbit/s λ-tunable WDM/TDM-PON using synchronized gain-clamping SOA,” in Optical Fiber Communication Conference Technical Digest (OFC2013), paper OW4D.6 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Standard TWDM PON architecture.

Fig. 2
Fig. 2

Flexible TWDM PON architecture.

Fig. 3
Fig. 3

Modular approach for pay-as-you-grow deployment of TWDM PON. (a) One TWDM PON OLT transceiver module (M1) is added to increase the capacity in each ODN to 20Gb/s. (b) A second TWDM PON OLT transceiver module (M2) is activated for 30Gb/s capacity in each ODN. (c) A third TWDM PON OLT transceiver module (M3) is added for 40Gb/s capacity in each ODN. (d) A fourth TWDM PON OLT transceiver module (M4) is activated and the total capacity in each ODN reaches 50Gb/s. WDM filters in the figures separate the 10G PON wavelengths from TWDM PON wavelengths.

Fig. 4
Fig. 4

Load balancing in the flexible TWDM PON. As the traffic load in ODN1 is low, TRx2, TRx3 and TRx4 in transceiver module M4, M3 and M2 respectively are tuned to λ 2,M4 d+ , λ 3,M3 d+ and λ 4,M2 d+ , so that these transceivers can serve ODN2 which has heavy traffic load.

Fig. 5
Fig. 5

Load balancing in flexible TWDM PON with fixed receiver at OLT. (a) shows the downstream wavelength assignment and (b) shows the upstream wavelength assignment. With such wavelength assignment, 70Gb/s aggregated bandwidth can be provided to ODN2 in both downstream and upstream.

Fig. 6
Fig. 6

Power saving in flexible TWDM PON. If the traffic load in a flexible TWDM PON is low, a single OLT transceiver (TRx1 in module M1) can serve multiple ODNs, achieving significant power saving. In comparison, at least one transceiver in each OLT module must remain active in a conventional TWDM PON operating in power saving mode.

Fig. 7
Fig. 7

Tuning speed of EMLs and DBR lasers. Two curves in the each diagram represent the received powers in two adjacent channels (100 GHz spacing) when the wavelength of the EML for downstream (DBR for upstream) is switched from λd to λd+ in downstream (λu to λu+ in upstream).

Fig. 8
Fig. 8

Bit error rates of 10 Gb/s downstream (top) and upstream (bottom) transmissions for back-to-back and after 20km standard single mode fiber in the flexible TWDM PON test bed.

Fig. 9
Fig. 9

Pluggable optical transceiver modules for TWDM PONs.

Fig. 10
Fig. 10

Testing results of OLT and ONU transceiver module. (a) Eye diagrams from 4 OLT transmitters (top) and an ONU transmitter (bottom) tuned to 4 different wavelengths with 100 GHz channel spacing. (b) Optical spectrum of the transmitted signals from OLT transceiver module; (c) Optical spectra of an ONU transmitter tuned to 4 different upstream channels.

Fig. 11
Fig. 11

Bit error rates for 10 Gb/s downstream (top) and 2.5 Gb/s upstream (bottom) transmissions at back-to-back, after 20km and 40km standard single mode fiber.

Fig. 12
Fig. 12

Measured RSSI value from OLT transceiver when ONU wavelength is tuned across upstream channel 3. The ONU wavelength is set by a DAC (digital to analog converter) with each DAC step corresponding to a change of 4 pm in ONU wavelength.

Metrics