Abstract

Giant positive and negative Goos-Hänchen shift more than 5000 times of the operating wavelength is observed when a beam is totally reflected from a substrate decorated by a dielectric grating. Different to the former studies where Goos-Hänchen shift is related to metamaterials or plasmonic materials with ohmic loss, here the giant shift is realized with unity reflectance without the loss. This is extremely advantageous for sensor applications. The Goos-Hänchen shift exhibits a strong resonant feature at the frequency of guided mode resonance, and is associated to the energy flow carried by the guided mode.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Goos, H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Annalen der Physik 436, 333346 (1947).
    [CrossRef]
  2. M. Merano, A. Aiello, M. GWt Hooft, E. Eliel, J. Woerdman, “Observation of goos-hanchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007).
    [CrossRef] [PubMed]
  3. X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
    [CrossRef]
  4. I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar, “Giant goos-hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003).
    [CrossRef]
  5. R. W. Ziolkowski, “Pulsed and CW gaussian beam interactions with double negative metamaterial slabs,” Opt. Express 11, 662–681 (2003).
    [CrossRef] [PubMed]
  6. T. Hashimoto, T. Yoshino, “Optical heterodyne sensor using the goos-hänchennchen shift,” Opt. Lett. 14, 913–915 (1989).
    [CrossRef] [PubMed]
  7. X. Yin, L. Hesselink, “Goos-hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
    [CrossRef]
  8. T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
    [CrossRef]
  9. J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
    [CrossRef]
  10. X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013).
    [CrossRef] [PubMed]
  11. Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
    [CrossRef]
  12. K. Artmann, “Annalen der physik 6,” Band 2, 87 (1948).
  13. T. Tamir, “Nonspecular phenomena in beam fields reflected by multilayered media,” J. Opt. Soc. Am. A 3, 558–565 (1986).
    [CrossRef]
  14. K. Y. Bliokh, A. Aiello, “Goos-hächen and imbert-fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
    [CrossRef]
  15. T. Tamir, E. Garmire, Integrated optics (Springer-Verlag, Berlin; New York, 1979).
  16. R. H. Renard, “Total reflection: A new evaluation of the goos-hänchen shift,” J. Opt. Soc. Am. 54, 1190–1196 (1964).
    [CrossRef]
  17. T. Tamir, H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am. 61, 1397–1413 (1971).
    [CrossRef]
  18. M. A. Breazeale, M. A. Torbett, “Backward displacement of waves reflected from an interface having superimposed periodicity,” Appl. Phys. Lett. 29, 456 (1976).
    [CrossRef]
  19. A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
    [CrossRef]
  20. S. W. Herbison, J. M. Vander Weide, N. F. Declercq, “Observation of ultrasonic backward beam displacement in transmission through a solid having superimposed periodicity,” Appl. Phys. Lett. 97, 041908 (2010).
    [CrossRef]
  21. M. Shokooh-Saremi, R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett. 35, 1121–1123 (2010).
    [CrossRef] [PubMed]
  22. Y. Ding, R. Magnusson, “Band gaps and leaky-wave effects in resonant photonic-crystal waveguides,” Opt. Express 15, 680–694 (2007).
    [CrossRef] [PubMed]
  23. C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26, 014043 (2011).
    [CrossRef]
  24. M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
    [CrossRef]
  25. C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
    [CrossRef]
  26. S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  27. R. Magnusson, “Flat-top resonant reflectors with sharply delimited angular spectra: an application of the rayleigh anomaly,” Opt. Lett. 38, 989–991 (2013).
    [CrossRef] [PubMed]
  28. S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A. 14, 629–639 (1997).
    [CrossRef]
  29. D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
    [CrossRef]
  30. J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
    [CrossRef] [PubMed]
  31. L. Li, “New formulation of the fourier modal method for crossed surface relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  32. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]

2013 (3)

2012 (3)

T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
[CrossRef]

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
[CrossRef]

2011 (2)

C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26, 014043 (2011).
[CrossRef]

J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[CrossRef] [PubMed]

2010 (3)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[CrossRef]

M. Shokooh-Saremi, R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett. 35, 1121–1123 (2010).
[CrossRef] [PubMed]

S. W. Herbison, J. M. Vander Weide, N. F. Declercq, “Observation of ultrasonic backward beam displacement in transmission through a solid having superimposed periodicity,” Appl. Phys. Lett. 97, 041908 (2010).
[CrossRef]

2008 (1)

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

2007 (2)

2006 (1)

X. Yin, L. Hesselink, “Goos-hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

2005 (1)

A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
[CrossRef]

2004 (2)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

2003 (2)

I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar, “Giant goos-hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003).
[CrossRef]

R. W. Ziolkowski, “Pulsed and CW gaussian beam interactions with double negative metamaterial slabs,” Opt. Express 11, 662–681 (2003).
[CrossRef] [PubMed]

1997 (2)

L. Li, “New formulation of the fourier modal method for crossed surface relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
[CrossRef]

S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A. 14, 629–639 (1997).
[CrossRef]

1996 (1)

1990 (1)

1989 (1)

1986 (1)

1976 (1)

M. A. Breazeale, M. A. Torbett, “Backward displacement of waves reflected from an interface having superimposed periodicity,” Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

1971 (1)

1964 (1)

1948 (1)

K. Artmann, “Annalen der physik 6,” Band 2, 87 (1948).

1947 (1)

F. Goos, H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Annalen der Physik 436, 333346 (1947).
[CrossRef]

Aiello, A.

Artmann, K.

K. Artmann, “Annalen der physik 6,” Band 2, 87 (1948).

Bagby, J. S.

Beausoleil, R. G.

J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[CrossRef]

Bertoni, H. L.

Bliokh, K. Y.

K. Y. Bliokh, A. Aiello, “Goos-hächen and imbert-fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[CrossRef]

Breazeale, M. A.

A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
[CrossRef]

M. A. Breazeale, M. A. Torbett, “Backward displacement of waves reflected from an interface having superimposed periodicity,” Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

Cao, Z.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013).
[CrossRef] [PubMed]

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
[CrossRef]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26, 014043 (2011).
[CrossRef]

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Choi, Y.-W.

T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
[CrossRef]

Declercq, N. F.

S. W. Herbison, J. M. Vander Weide, N. F. Declercq, “Observation of ultrasonic backward beam displacement in transmission through a solid having superimposed periodicity,” Appl. Phys. Lett. 97, 041908 (2010).
[CrossRef]

A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
[CrossRef]

Deng, Y.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Ding, Y.

Eliel, E.

Erdogan, T.

S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A. 14, 629–639 (1997).
[CrossRef]

Fang, N.

X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Fattal, D.

J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[CrossRef]

Fiorentino, M.

J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[CrossRef]

Garmire, E.

T. Tamir, E. Garmire, Integrated optics (Springer-Verlag, Berlin; New York, 1979).

Goos, F.

F. Goos, H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Annalen der Physik 436, 333346 (1947).
[CrossRef]

GWt Hooft, M.

Hänchen, H.

F. Goos, H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Annalen der Physik 436, 333346 (1947).
[CrossRef]

Hashimoto, T.

Hasse, R. D.

A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
[CrossRef]

Herbison, S. W.

S. W. Herbison, J. M. Vander Weide, N. F. Declercq, “Observation of ultrasonic backward beam displacement in transmission through a solid having superimposed periodicity,” Appl. Phys. Lett. 97, 041908 (2010).
[CrossRef]

Hesselink, L.

X. Yin, L. Hesselink, “Goos-hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Huang, M.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Jiang, X.

Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
[CrossRef]

Kim, D. G.

T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
[CrossRef]

Kim, H.-S.

T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
[CrossRef]

Kivshar, Y. S.

I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar, “Giant goos-hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003).
[CrossRef]

Lee, T.-K.

T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
[CrossRef]

Li, H.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013).
[CrossRef] [PubMed]

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

Li, J.

J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[CrossRef]

Li, L.

Li, Q.

Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
[CrossRef]

Liu, Z.

X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Magnusson, R.

Mateus, C.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

McPherson, M. S.

A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
[CrossRef]

Merano, M.

Moharam, M. G.

Morris, G. M.

S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A. 14, 629–639 (1997).
[CrossRef]

Neureuther, A.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Norton, S. M.

S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A. 14, 629–639 (1997).
[CrossRef]

Oh, G.-Y.

T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
[CrossRef]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[CrossRef]

Ran, M.

Renard, R. H.

Shadrivov, I. V.

I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar, “Giant goos-hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003).
[CrossRef]

Shokooh-Saremi, M.

Sun, J.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013).
[CrossRef] [PubMed]

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

Tamir, T.

Teklu, A.

A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
[CrossRef]

Torbett, M. A.

M. A. Breazeale, M. A. Torbett, “Backward displacement of waves reflected from an interface having superimposed periodicity,” Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

Vander Weide, J. M.

S. W. Herbison, J. M. Vander Weide, N. F. Declercq, “Observation of ultrasonic backward beam displacement in transmission through a solid having superimposed periodicity,” Appl. Phys. Lett. 97, 041908 (2010).
[CrossRef]

Wang, S. S.

Wang, X.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013).
[CrossRef] [PubMed]

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

Wang, Y.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013).
[CrossRef] [PubMed]

Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
[CrossRef]

Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
[CrossRef]

Woerdman, J.

Xiao, P.

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

Yin, C.

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013).
[CrossRef] [PubMed]

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

Yin, X.

X. Yin, L. Hesselink, “Goos-hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Yoshino, T.

Zhang, X.

X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

Zharov, A. A.

I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar, “Giant goos-hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Ziolkowski, R. W.

Annalen der Physik (1)

F. Goos, H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Annalen der Physik 436, 333346 (1947).
[CrossRef]

Appl. Phys. Lett. (6)

X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004).
[CrossRef]

I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar, “Giant goos-hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003).
[CrossRef]

X. Yin, L. Hesselink, “Goos-hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[CrossRef]

M. A. Breazeale, M. A. Torbett, “Backward displacement of waves reflected from an interface having superimposed periodicity,” Appl. Phys. Lett. 29, 456 (1976).
[CrossRef]

S. W. Herbison, J. M. Vander Weide, N. F. Declercq, “Observation of ultrasonic backward beam displacement in transmission through a solid having superimposed periodicity,” Appl. Phys. Lett. 97, 041908 (2010).
[CrossRef]

Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012).
[CrossRef]

Band (1)

K. Artmann, “Annalen der physik 6,” Band 2, 87 (1948).

IEEE Photonic. Technol. Lett. (1)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

J. Appl. Phys. (2)

A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005).
[CrossRef]

J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012).
[CrossRef]

J. Opt. (1)

K. Y. Bliokh, A. Aiello, “Goos-hächen and imbert-fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. A. (1)

S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A. 14, 629–639 (1997).
[CrossRef]

Nat. Photonics (2)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[CrossRef]

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Opt. Commun. (1)

T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26, 014043 (2011).
[CrossRef]

Other (1)

T. Tamir, E. Garmire, Integrated optics (Springer-Verlag, Berlin; New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a): Schematic of a dielectric grating and the GH shift under a total intenal reflection. Duty cycle is defined as Γ = a/Λ. (b): Dispersion curve for guided mode of s and p polarization for a grating of Λ = 0.43μm, Γ = 0.93, t = 0.11μm, εh = 12.12, εl = εc = 1 (free space), εs = 2.09 (SiO2). The two dashed lines are the light lines of the free space (k0 = kx) and the substrate ( k 0 = k x / ε s), respectively.

Fig. 2
Fig. 2

(a): Phase of the reflection coefficient and GH shift vs kx, for an incidence of 1.5μm free space wavelength from the substrate. (b): GH shift vs k0 for an incidence from the substrate side with kx = 0.38 × 2π/Λ. The k0 where the magnitude of the GH shift is maximized corresponds to the GMR frequency of the same kx.

Fig. 3
Fig. 3

Instantaneous distribution of electric field Ez (the color plot). The plot for the distribution of the x component of the Poynting vector (Sx) along the white dashed line is placed nearby. For the same system of Fig. 2 at 1.5 μm free space wavelength, with kx = 0.38 × 2π/Λ (negative GH shift of maximum magnitude, (a)), or kx = 0.29 × 2π/Λ (positive GH shift of 0.33 μm, 3b)

Fig. 4
Fig. 4

Giant GH shift at different frequency and kx. for s (a) and p (b) polarization of the grating studied in Fig. 2 corresponds to the framed areas. In (c), we give results for s polarization for the grating of the same design parameters of that studied in Fig. 2 but with a perfect electric conductor (PEC) substrate, while (d) is p polarization for the same grating design but half of the grating thickness. The crosses are the eigenmodes of the corresponding gratings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = 1 k cos θ d ϕ d θ = d ϕ d k x

Metrics