Abstract

Plasmonic glasses composed of metallic inclusions in a host dielectric medium are investigated for their optical properties. Such structures characterized by short-range order can be easily fabricated using bottom-up, self-organization methods and may be utilized in a number of applications, thus, quantification of their properties is important. We show, using T-Matrix calculations of 1D, 2D, and 3D plasmonic glasses, that their plasmon resonance position oscillates as a function of the particle spacing yielding blue- and redshifts up to 0.3 eV in the visible range with respect to the single particle surface plasmon. Their properties are discussed in light of an analytical model of an average particle’s polarizability that originates from a coupled dipole methodology.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
    [CrossRef] [PubMed]
  2. R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
    [CrossRef]
  3. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
    [CrossRef]
  4. N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012).
    [CrossRef]
  5. K. Güngör, E. Ünal, H. V. Demir, “Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement,” Opt. Express 21, 23097–23106 (2013).
    [CrossRef] [PubMed]
  6. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
    [CrossRef] [PubMed]
  7. A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).
    [CrossRef]
  8. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
    [CrossRef] [PubMed]
  9. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
    [CrossRef] [PubMed]
  10. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
    [CrossRef]
  11. B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef] [PubMed]
  12. V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
    [CrossRef]
  13. T. L. Temple, D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys. 109, 084343 (2011).
    [CrossRef]
  14. K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).
  15. M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon gesonators,” Opt. Express 20, 13311–13319 (2012).
    [CrossRef] [PubMed]
  16. C. Hägglund, S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys Chem. Lett. 3, 1275–1285 (2012).
    [CrossRef]
  17. S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
    [CrossRef] [PubMed]
  18. C. Rockstuhl, T. Scharf, eds., Amorphous Nanophotonics (Springer, 2013).
    [CrossRef]
  19. M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
    [CrossRef] [PubMed]
  20. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
    [CrossRef]
  21. R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
    [CrossRef]
  22. S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
    [CrossRef]
  23. S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
    [CrossRef] [PubMed]
  24. A. V. Panov, “Impact of interparticle dipoledipole interactions on optical nonlinearity of nanocomposites,” J. Mod. Opt. 60, 915–919 (2013).
    [CrossRef]
  25. J. Wang, A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).
    [CrossRef] [PubMed]
  26. D. W. Mackowski, “Calculation of total cross section of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
    [CrossRef]
  27. E. L. Hinrichsen, J. Feder, T. Jøssang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
    [CrossRef]
  28. T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
    [CrossRef]
  29. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26, 517–527 (2009).
    [CrossRef]
  30. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  31. L. Zhao, K. L. Kelly, G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
    [CrossRef]
  32. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]

2013 (4)

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[CrossRef] [PubMed]

A. V. Panov, “Impact of interparticle dipoledipole interactions on optical nonlinearity of nanocomposites,” J. Mod. Opt. 60, 915–919 (2013).
[CrossRef]

M. Burresi, F. Pratesi, K. Vynck, M. Prasciolu, M. Tormen, D. S. Wiersma, “Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption,” Opt. Express 21, A268–A275 (2013).
[CrossRef] [PubMed]

K. Güngör, E. Ünal, H. V. Demir, “Nanoplasmonic surfaces enabling strong surface-normal electric field enhancement,” Opt. Express 21, 23097–23106 (2013).
[CrossRef] [PubMed]

2012 (8)

M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon gesonators,” Opt. Express 20, 13311–13319 (2012).
[CrossRef] [PubMed]

C. Hägglund, S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys Chem. Lett. 3, 1275–1285 (2012).
[CrossRef]

S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
[CrossRef]

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012).
[CrossRef]

R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
[CrossRef]

2011 (5)

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
[CrossRef]

T. L. Temple, D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys. 109, 084343 (2011).
[CrossRef]

J. Wang, A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).
[CrossRef] [PubMed]

2009 (2)

A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26, 517–527 (2009).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

2008 (1)

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

2003 (3)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

2000 (2)

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).
[CrossRef]

1998 (1)

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

1994 (2)

1986 (1)

E. L. Hinrichsen, J. Feder, T. Jøssang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Alaeian, H.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[CrossRef] [PubMed]

Alaverdyan, Y.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Albrektsen, O.

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Antosiewicz, T. J.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
[CrossRef]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
[CrossRef]

C. Hägglund, S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys Chem. Lett. 3, 1275–1285 (2012).
[CrossRef]

Auguié, B.

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Aussenegg, F.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Bagnall, D. M.

T. L. Temple, D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys. 109, 084343 (2011).
[CrossRef]

Barnes, W. L.

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Baughman, R. H.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

Behan, G.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Bozhevolnyi, S. I.

Bürgi, T.

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Burresi, M.

Chan, C. T.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

Cui, C.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

Cunningham, A.

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Dantas, S. O.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

Demir, H. V.

Dionne, J. A.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Dmitriev, A.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Draine, B. T.

Etrich, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Feder, J.

E. L. Hinrichsen, J. Feder, T. Jøssang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Flatau, P. J.

Fleischer, K.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Fox, D.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Fredriksson, H.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Fuhrmann, B.

N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012).
[CrossRef]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

Genack, A. Z.

J. Wang, A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).
[CrossRef] [PubMed]

Geyer, N.

N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012).
[CrossRef]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Gozhenko, V. V.

V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
[CrossRef]

Gu, J.

R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
[CrossRef]

Güngör, K.

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Hägglund, C.

C. Hägglund, S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys Chem. Lett. 3, 1275–1285 (2012).
[CrossRef]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Helgert, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Hinrichsen, E. L.

E. L. Hinrichsen, J. Feder, T. Jøssang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Homonnay, N.

N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012).
[CrossRef]

Iqbal, Z.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

Jøssang, T.

E. L. Hinrichsen, J. Feder, T. Jøssang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Käll, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Kasemo, B.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Kelly, K. L.

L. Zhao, K. L. Kelly, G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

Khayrullin, I.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

Kley, E.-B.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Koh, A. L.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[CrossRef] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

Kravets, V. V.

V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
[CrossRef]

Krenn, J.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Langhammer, C.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Lederer, F.

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Lei, X. Y.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

Leipner, H. S.

N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Lu, X.

R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
[CrossRef]

Mackowski, D. W.

Marti, J.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

McGilp, J. F.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Menzel, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Moroz, A.

A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26, 517–527 (2009).
[CrossRef]

A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).
[CrossRef]

Mülig, S.

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Nielsen, M. G.

Pacholski, C.

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Panov, A. V.

A. V. Panov, “Impact of interparticle dipoledipole interactions on optical nonlinearity of nanocomposites,” J. Mod. Opt. 60, 915–919 (2013).
[CrossRef]

Pertsch, T.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Pinchuk, A. O.

V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
[CrossRef]

Pors, A.

Prasciolu, M.

Pratesi, F.

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Ralchenko, V. G.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

Rockstuhl, C.

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Schatz, G. C.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

Scheeler, S.

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

Sheikholeslami, S. N.

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[CrossRef] [PubMed]

Sheng, P.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

Shvets, I. V.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Sing, R.

R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
[CrossRef]

Smith, D. A.

V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
[CrossRef]

Sutherland, D. S.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Tam, W. Y.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

Temple, T. L.

T. L. Temple, D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys. 109, 084343 (2011).
[CrossRef]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

Tian, Z.

R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
[CrossRef]

Tormen, M.

Tüennermann, A.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Ünal, E.

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

Vedral, J. L.

V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
[CrossRef]

Verre, R.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Vynck, K.

Wang, J.

J. Wang, A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Wiersma, D. S.

Zäch, M.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
[CrossRef]

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

Zakhidov, A. A.

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

Zhang, H.

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Zhang, W.

R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
[CrossRef]

Zhang, W. Y.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

Zheng, D. G.

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

Zoric, I.

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
[CrossRef]

ACS Nano (1)

S. Mülig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011).
[CrossRef]

Adv. Mater. (1)

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zäch, B. Kasemo, “Hole-mask coloidal lithography,” Adv. Mater. 19, 4297–4302 (2007).
[CrossRef]

J. Appl. Phys. (1)

T. L. Temple, D. M. Bagnall, “Optical properties of gold and aluminium nanoparticles for silicon solar cell applications,” J. Appl. Phys. 109, 084343 (2011).
[CrossRef]

J. Mod. Opt. (1)

A. V. Panov, “Impact of interparticle dipoledipole interactions on optical nonlinearity of nanocomposites,” J. Mod. Opt. 60, 915–919 (2013).
[CrossRef]

J. Opt. (1)

R. Sing, X. Lu, J. Gu, Z. Tian, W. Zhang, “Random terahertz metamaterials,” J. Opt. 12, 015101 (2012).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys Chem. Lett. (1)

C. Hägglund, S. P. Apell, “Plasmonic near-field absorbers for ultrathin solar cells,” J. Phys Chem. Lett. 3, 1275–1285 (2012).
[CrossRef]

J. Phys. Chem. B (2)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[CrossRef]

J. Phys. Chem. C (1)

V. V. Gozhenko, D. A. Smith, J. L. Vedral, V. V. Kravets, A. O. Pinchuk, “Tunable resonance absorption of light in a chain of gold nanoparticles,” J. Phys. Chem. C 115, 8911–8917 (2011).
[CrossRef]

J. Stat. Phys. (1)

E. L. Hinrichsen, J. Feder, T. Jøssang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Nano Lett. (1)

S. N. Sheikholeslami, H. Alaeian, A. L. Koh, J. A. Dionne, “A metafluid exhibiting strong optical magnetism,” Nano Lett. 13, 4137–4141 (2013).
[CrossRef] [PubMed]

Nanotechnol. (1)

R. Verre, K. Fleischer, J. F. McGilp, D. Fox, G. Behan, H. Zhang, I. V. Shvets, “Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays,” Nanotechnol. 23, 035606 (2012).
[CrossRef]

Nature (1)

J. Wang, A. Z. Genack, “Transport through modes in random media,” Nature 471, 345–348 (2011).
[CrossRef] [PubMed]

Nature Mater. (1)

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tüennermann, F. Lederer, T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[CrossRef] [PubMed]

B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

A. Moroz, “Three-dimensional complete photonic-band-gap structures in the visible,” Phys. Rev. Lett. 83, 5274–5277 (1999).
[CrossRef]

W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, P. Sheng, “Robust photonic band gap from tunable scatterers,” Phys. Rev. Lett. 84, 2853–2856 (2000).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef] [PubMed]

T. J. Antosiewicz, S. P. Apell, M. Zäch, I. Zorić, C. Langhammer, “Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles,” Phys. Rev. Lett. 109, 247401 (2012).
[CrossRef]

Science (2)

A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897–901 (1998).
[CrossRef] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011).
[CrossRef] [PubMed]

Vacuum (1)

N. Homonnay, N. Geyer, B. Fuhrmann, H. S. Leipner, “Advanced colloidal lithography for sub-100nm lift-off structures,” Vacuum 86, 1232–1234 (2012).
[CrossRef]

Other (1)

C. Rockstuhl, T. Scharf, eds., Amorphous Nanophotonics (Springer, 2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plasmonic glasses in 1-, 2-, and 3-dimensions. (a) The random chain is an array along an arbitrary direction defined by the angles θ0 and ϕo. (b) The 2D amorphous array is tilted at an angle θm to the z-axis. (c) 3D plasmonic glass. Notice the quasi-random arrangement of particles in all displayed lattices. Spatial dimensions of the arrays are 810 μm, 9.2×9.2 μm2, and 2×2×2 μm3, respectively for �� = 1. (d) Pair correlation functions for analyzed plasmonic glasses. The points represent data from the RSA algorithm used to generate particle position for T-Matrix calculations and the lines show the fitted functions [see Eq. (1)]. The pair correlation functions are similar; the differences in the spectra of the different glasses originate from phase space, i.e. the dimensionality of the system.

Fig. 2
Fig. 2

Resonance amplitude per nanosphere vs. peak position for 2D plasmonic glass calculated using the T-Matrix method for 6k (red crosses) and 10k spheres (blue circles). The markers are placed every 0.5�� with numbers indicating values of ��. The continuous line represents the peak energy calculated using an average particle polarizability approach, see Section 4 for details. The two methods give excellent agreement down to �� = 2.

Fig. 3
Fig. 3

Optical cross sections of an amorphous chain of particles normally illuminated with (a) the electric field perpendicular and (b) parallel to the chain. Resonance positions are calculated using the T-Matrix method (markers) and the analytically calculated average medium extinction (thick line). The thin horizontal lines mark respective single particle values. (c) Extinction peak position evolution with changing orientation relative to the incident wave. The chain orientation starts from (0,0) – wave incident along the chain, tilts to (1,0) – electric field parallel to the chain, rotates to (1,1) – electric field perpendicular to chain, and tilts back to (0,1). The angles are in units of π/2 for (θ0, ϕ0). Notice the very strong redshift of the plasmon peak for a chain illuminated along its length. As the incidence angle is decreased the redshift diminishes and only very small oscillations remain. Rotating the chain from parallel to perpendicular relative to the electric field amplifies the oscillations to maximum amplitude. The final tilting back to the grazing incidence restores the strong redshift.

Fig. 4
Fig. 4

Peak positions of extinction, absorption, and scattering cross sections of 3D plasmonic glass with 6k spheres calculated using the T-Matrix method. Markers show cc dependence, while horizontal lines indicate single particle values. The black dashed line shows the analytically obtained extinction peak position which agrees very well down to �� = 5, between 3 and 5 it underestimates the peak shift, while below 3 overestimates it. However, a consistent redshift of all cross sections is demonstrated.

Tables (1)

Tables Icon

Table 1 Fitting parameters for pair correlation functions [see Eq. (1)] of plasmonic glasses in 1-, 2-, and 3-dimensions shown in Fig. 1.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

g ( x ) = Θ ( x 1 ) ( 1 + sin ( x d 1 d 0 ) ( a 2 e a 1 ( x a 0 ) + b 2 e b 1 ( x b 0 ) ) ) ,
( α * ) 1 = ( α ) 1 + 𝒮 ,
𝒮 = σ e i k z A x x g ( r ) d V ,
α * = 1 α 1 + 𝒮 .
C ext Im α 1 + α 𝒮 = Im ( α ) | α | 2 Im ( 𝒮 ) | 1 + α 𝒮 | 2 ,
C sca | α | 2 | 1 + α 𝒮 | 2 .
P j = P 0 e i k z j ,
E loc , 0 = E 0 j 0 A 0 j P j = E 0 P 0 j 0 A 0 j e i k z j .
P 0 ( 1 α j 0 A 0 j e i k z j ) = α E loc , 0 α * = P 0 E loc , 0 = α 1 α j A 0 j e i k z j ,
j 0 A 0 j e i k z j = j 0 δ ( x x j ) A 0 j e i k z j d V ,
𝒮 = σ e i k z A x x g ( r ) d V ,
A x x = 1 4 π ε 0 e i k r [ k 2 r ( sin 2 θ sin 2 ϕ cos 2 θ ) + 1 i k r r 3 ( 1 3 sin 2 θ cos 2 ϕ ) ] .
𝒮 3 D = σ r c c + 0 π 0 2 π r 2 sin θ e i k r cos θ A x x g ( x ) d r d θ d ϕ .
𝒮 2 D = σ r c c + 0 π 0 2 π r sin θ e i k r cos θ A x x δ [ θ arccot ( cot θ m sin ϕ ) ] g ( x ) d r d θ d ϕ .
𝒮 1 D = σ r cc + ( e i k r cos θ 0 + e i k r cos θ 0 ) A x x g ( x ) d r .

Metrics