Abstract

Low-temperature photoluminescence (PL) spectra of electron-hole systems in Si nanowires (NWs) prepared by thermal oxidization of Si fin structures were studied. Mapping of PL reveals that NWs with uniform width are formed over a large area. Annealing temperature dependence of PL peak intensities was maximized at 400 °C for each NW type, which are consistent with previous reports. Our results confirmed that the micro-PL demonstrated here is one of the important methods for characterizations of the interface defects in Si NWs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Iwai, “Roadmap for 22 nm and beyond,” Microelectron. Eng. 86(7–9), 1520–1528 (2009).
    [CrossRef]
  2. S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
    [CrossRef]
  3. M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
    [CrossRef]
  4. J. Knoch, S. Mantl, J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid State Electron. 51(4), 572–578 (2007).
    [CrossRef]
  5. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
    [CrossRef]
  6. Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
    [CrossRef]
  7. Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
    [CrossRef] [PubMed]
  8. A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
    [CrossRef] [PubMed]
  9. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [CrossRef] [PubMed]
  10. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
    [CrossRef]
  11. O. Hayden, A. B. Greytak, D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 17(6), 701–704 (2005).
    [CrossRef]
  12. Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [CrossRef]
  13. M. V. Fischetti, S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Phys. Rev. B Condens. Matter 38(14), 9721–9745 (1988).
    [CrossRef] [PubMed]
  14. T. Ogawa, T. Takagahara, “Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system,” Phys. Rev. B Condens. Matter 43(17), 14325–14328 (1991).
    [CrossRef] [PubMed]
  15. T. Ogawa, T. Takagahara, “Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B Condens. Matter 44(15), 8138–8156 (1991).
    [CrossRef] [PubMed]
  16. P. J. Dean, J. R. Haynes, W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
    [CrossRef]
  17. W. P. Dumke, “Two-phonon indirect transitions and lattice scattering in Si,” Phys. Rev. 118(4), 938–939 (1960).
    [CrossRef]
  18. L. V. Keldysh, “The electron-hole liquid in semiconductors,” Contemp. Phys. 27(5), 395–428 (1986).
    [CrossRef]
  19. W. F. Brinkman, T. M. Rice, “Electron-hole liquids in semiconductors,” Phys. Rev. B 7(4), 1508–1523 (1973).
    [CrossRef]
  20. J. C. Hensel, T. G. Phillips, T. M. Rice, and G. A. Thomas, Solid States of Physics (Academic, 1977), Vol. 32.
  21. O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
    [CrossRef]
  22. D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
    [CrossRef]
  23. D. J. Lockwood, Z. H. Lu, J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
    [CrossRef] [PubMed]
  24. H. D. Barber, “Effective mass and intrinsic concentration in silicon,” Solid State Electron. 10(11), 1039–1051 (1967).
    [CrossRef]
  25. M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
    [CrossRef]
  26. H. Ohta, T. Watanabe, I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A Molecular dynamics Study,” Jpn. J. Appl. Phys. 46(5B), 3277–3282 (2007).
    [CrossRef]
  27. K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
    [CrossRef]
  28. S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
    [CrossRef]
  29. Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002).
    [CrossRef]
  30. L. D. Thanh, P. Balk, “Elimination and generation of Si/ SiO2 interface traps by low temperature hydrogen annealing,” J. Electrochem. Soc. 135(7), 1797–1801 (1988).
    [CrossRef]
  31. M. L. Reed, J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys. 63(12), 5776–5793 (1988).
    [CrossRef]

2012 (1)

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

2011 (1)

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

2010 (1)

Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
[CrossRef]

2009 (1)

H. Iwai, “Roadmap for 22 nm and beyond,” Microelectron. Eng. 86(7–9), 1520–1528 (2009).
[CrossRef]

2008 (2)

M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

2007 (4)

H. Ohta, T. Watanabe, I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A Molecular dynamics Study,” Jpn. J. Appl. Phys. 46(5B), 3277–3282 (2007).
[CrossRef]

J. Knoch, S. Mantl, J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid State Electron. 51(4), 572–578 (2007).
[CrossRef]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

2005 (1)

O. Hayden, A. B. Greytak, D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 17(6), 701–704 (2005).
[CrossRef]

2004 (1)

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

2003 (1)

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
[CrossRef]

2002 (1)

Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002).
[CrossRef]

2001 (2)

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

2000 (1)

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

1996 (1)

D. J. Lockwood, Z. H. Lu, J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[CrossRef] [PubMed]

1992 (1)

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

1991 (2)

T. Ogawa, T. Takagahara, “Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system,” Phys. Rev. B Condens. Matter 43(17), 14325–14328 (1991).
[CrossRef] [PubMed]

T. Ogawa, T. Takagahara, “Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B Condens. Matter 44(15), 8138–8156 (1991).
[CrossRef] [PubMed]

1988 (3)

M. V. Fischetti, S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Phys. Rev. B Condens. Matter 38(14), 9721–9745 (1988).
[CrossRef] [PubMed]

L. D. Thanh, P. Balk, “Elimination and generation of Si/ SiO2 interface traps by low temperature hydrogen annealing,” J. Electrochem. Soc. 135(7), 1797–1801 (1988).
[CrossRef]

M. L. Reed, J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys. 63(12), 5776–5793 (1988).
[CrossRef]

1986 (1)

L. V. Keldysh, “The electron-hole liquid in semiconductors,” Contemp. Phys. 27(5), 395–428 (1986).
[CrossRef]

1982 (1)

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

1973 (1)

W. F. Brinkman, T. M. Rice, “Electron-hole liquids in semiconductors,” Phys. Rev. B 7(4), 1508–1523 (1973).
[CrossRef]

1967 (2)

H. D. Barber, “Effective mass and intrinsic concentration in silicon,” Solid State Electron. 10(11), 1039–1051 (1967).
[CrossRef]

P. J. Dean, J. R. Haynes, W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

1960 (1)

W. P. Dumke, “Two-phonon indirect transitions and lattice scattering in Si,” Phys. Rev. 118(4), 938–939 (1960).
[CrossRef]

Aers, G. C.

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Ahmet, P.

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Allard, L. B.

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Ando, K.

Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002).
[CrossRef]

Appenzeller, J.

J. Knoch, S. Mantl, J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid State Electron. 51(4), 572–578 (2007).
[CrossRef]

Arakawa, Y.

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Balk, P.

L. D. Thanh, P. Balk, “Elimination and generation of Si/ SiO2 interface traps by low temperature hydrogen annealing,” J. Electrochem. Soc. 135(7), 1797–1801 (1988).
[CrossRef]

Barber, H. D.

H. D. Barber, “Effective mass and intrinsic concentration in silicon,” Solid State Electron. 10(11), 1039–1051 (1967).
[CrossRef]

Baribeau, J. M.

D. J. Lockwood, Z. H. Lu, J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[CrossRef] [PubMed]

Baron, T.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Bell, D. C.

O. Hayden, A. B. Greytak, D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 17(6), 701–704 (2005).
[CrossRef]

Björk, M. T.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Brinkman, W. F.

W. F. Brinkman, T. M. Rice, “Electron-hole liquids in semiconductors,” Phys. Rev. B 7(4), 1508–1523 (1973).
[CrossRef]

Bryskiewicz, B.

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Calvo, V.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Charbonneau, S.

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Cui, Y.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
[CrossRef]

Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Dai, P.

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Dean, P. J.

P. J. Dean, J. R. Haynes, W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

Demichel, O.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Dumke, W. P.

W. P. Dumke, “Two-phonon indirect transitions and lattice scattering in Si,” Phys. Rev. 118(4), 938–939 (1960).
[CrossRef]

Fan, C.

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Fischetti, M. V.

M. V. Fischetti, S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Phys. Rev. B Condens. Matter 38(14), 9721–9745 (1988).
[CrossRef] [PubMed]

Flood, W. F.

P. J. Dean, J. R. Haynes, W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Fujieda, S.

Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002).
[CrossRef]

Gao, A.

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Gao, X.

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Gentile, P.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Greytak, A. B.

O. Hayden, A. B. Greytak, D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 17(6), 701–704 (2005).
[CrossRef]

Hayden, O.

O. Hayden, A. B. Greytak, D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 17(6), 701–704 (2005).
[CrossRef]

Haynes, J. R.

P. J. Dean, J. R. Haynes, W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

Horiguchi, S.

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Houghton, D. C.

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Iwai, H.

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
[CrossRef]

H. Iwai, “Roadmap for 22 nm and beyond,” Microelectron. Eng. 86(7–9), 1520–1528 (2009).
[CrossRef]

Kageshima, H.

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Kakushima, K.

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
[CrossRef]

Kawashima, Y.

Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “The electron-hole liquid in semiconductors,” Contemp. Phys. 27(5), 395–428 (1986).
[CrossRef]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Knoch, J.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

J. Knoch, S. Mantl, J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid State Electron. 51(4), 572–578 (2007).
[CrossRef]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Laux, S. E.

M. V. Fischetti, S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Phys. Rev. B Condens. Matter 38(14), 9721–9745 (1988).
[CrossRef] [PubMed]

Lee, Y.

Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
[CrossRef]

Li, T.

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
[CrossRef]

Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002).
[CrossRef]

Lockwood, D. J.

D. J. Lockwood, Z. H. Lu, J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[CrossRef] [PubMed]

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Lu, N.

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Lu, Z. H.

D. J. Lockwood, Z. H. Lu, J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[CrossRef] [PubMed]

Magnea, N.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Mantl, S.

J. Knoch, S. Mantl, J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid State Electron. 51(4), 572–578 (2007).
[CrossRef]

McCaffrey, J. P.

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Murase, K.

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Nagase, M.

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Natori, K.

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
[CrossRef]

Noe, P.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Oehler, F.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Ogawa, T.

T. Ogawa, T. Takagahara, “Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system,” Phys. Rev. B Condens. Matter 43(17), 14325–14328 (1991).
[CrossRef] [PubMed]

T. Ogawa, T. Takagahara, “Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B Condens. Matter 44(15), 8138–8156 (1991).
[CrossRef] [PubMed]

Ohdomari, I.

H. Ohta, T. Watanabe, I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A Molecular dynamics Study,” Jpn. J. Appl. Phys. 46(5B), 3277–3282 (2007).
[CrossRef]

Ohmori, K.

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Ohta, H.

H. Ohta, T. Watanabe, I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A Molecular dynamics Study,” Jpn. J. Appl. Phys. 46(5B), 3277–3282 (2007).
[CrossRef]

Park, H.

Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Pauc, N.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Peyrade, D.

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Plummer, J. D.

M. L. Reed, J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys. 63(12), 5776–5793 (1988).
[CrossRef]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Reed, M. L.

M. L. Reed, J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys. 63(12), 5776–5793 (1988).
[CrossRef]

Rice, T. M.

W. F. Brinkman, T. M. Rice, “Electron-hole liquids in semiconductors,” Phys. Rev. B 7(4), 1508–1523 (1973).
[CrossRef]

Riel, H.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Riess, W.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Sakaki, H.

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Sato, S.

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Schmid, H.

M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

Shiraishi, K.

Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
[CrossRef]

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Takagahara, T.

T. Ogawa, T. Takagahara, “Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system,” Phys. Rev. B Condens. Matter 43(17), 14325–14328 (1991).
[CrossRef] [PubMed]

T. Ogawa, T. Takagahara, “Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B Condens. Matter 44(15), 8138–8156 (1991).
[CrossRef] [PubMed]

Takahashi, Y.

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Thanh, L. D.

L. D. Thanh, P. Balk, “Elimination and generation of Si/ SiO2 interface traps by low temperature hydrogen annealing,” J. Electrochem. Soc. 135(7), 1797–1801 (1988).
[CrossRef]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

Uematsu, M.

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Wang, A.

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Wang, D.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
[CrossRef]

Wang, W. U.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
[CrossRef]

Wang, Y.

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Watanabe, T.

H. Ohta, T. Watanabe, I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A Molecular dynamics Study,” Jpn. J. Appl. Phys. 46(5B), 3277–3282 (2007).
[CrossRef]

Wei, Q.

Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Yamada, K.

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Zhong, Z.

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
[CrossRef]

Adv. Mater. (1)

O. Hayden, A. B. Greytak, D. C. Bell, “Core-shell nanowire light-emitting diodes,” Adv. Mater. 17(6), 701–704 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[CrossRef]

M. T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, “Silicon nanowire tunneling field-effect transistors,” Appl. Phys. Lett. 92(19), 193504 (2008).
[CrossRef]

O. Demichel, F. Oehler, P. Noe, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, N. Magnea, “Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires,” Appl. Phys. Lett. 93(21), 213104 (2008).
[CrossRef]

Can. J. Phys. (1)

D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, “Optical properties of porous silicon,” Can. J. Phys. 70(10-11), 1184–1193 (1992).
[CrossRef]

Contemp. Phys. (1)

L. V. Keldysh, “The electron-hole liquid in semiconductors,” Contemp. Phys. 27(5), 395–428 (1986).
[CrossRef]

J. Appl. Phys. (3)

Z. Liu, K. Ando, Y. Kawashima, S. Fujieda, “Influence of H2-annealing on the hydrogen distribution near SiO2 / Si (100) interfaces revealed by in situ nuclear reaction analysis,” J. Appl. Phys. 92(8), 4320–4329 (2002).
[CrossRef]

M. L. Reed, J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys. 63(12), 5776–5793 (1988).
[CrossRef]

Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, H. Iwai, “Size-dependent properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys. 107(11), 113705 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

L. D. Thanh, P. Balk, “Elimination and generation of Si/ SiO2 interface traps by low temperature hydrogen annealing,” J. Electrochem. Soc. 135(7), 1797–1801 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, K. Murase, “Mechanism of potential profile formation in Silicon single-electron transistors fabricated using pattern-dependence oxidation,” Jpn. J. Appl. Phys. 40(1A–B), L29–L32 (2001).
[CrossRef]

H. Ohta, T. Watanabe, I. Ohdomari, “Strain distribution around SiO2/Si interface in Si nanowires: A Molecular dynamics Study,” Jpn. J. Appl. Phys. 46(5B), 3277–3282 (2007).
[CrossRef]

Microelectron. Eng. (1)

H. Iwai, “Roadmap for 22 nm and beyond,” Microelectron. Eng. 86(7–9), 1520–1528 (2009).
[CrossRef]

Microelectron. Reliab. (1)

S. Sato, K. Kakushima, P. Ahmet, K. Ohmori, K. Natori, K. Yamada, H. Iwai, “Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors,” Microelectron. Reliab. 51(5), 879–884 (2011).
[CrossRef]

Nano Lett. (2)

A. Gao, N. Lu, Y. Wang, P. Dai, T. Li, X. Gao, Y. Wang, C. Fan, “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett. 12(10), 5262–5268 (2012).
[CrossRef] [PubMed]

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3(2), 149–152 (2003).
[CrossRef]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[CrossRef] [PubMed]

Phys. Rev. (2)

P. J. Dean, J. R. Haynes, W. F. Flood, “New radiative recombination processes involving neutral donors and acceptors in silicon and germanium,” Phys. Rev. 161(3), 711–729 (1967).
[CrossRef]

W. P. Dumke, “Two-phonon indirect transitions and lattice scattering in Si,” Phys. Rev. 118(4), 938–939 (1960).
[CrossRef]

Phys. Rev. B (1)

W. F. Brinkman, T. M. Rice, “Electron-hole liquids in semiconductors,” Phys. Rev. B 7(4), 1508–1523 (1973).
[CrossRef]

Phys. Rev. B Condens. Matter (3)

M. V. Fischetti, S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” Phys. Rev. B Condens. Matter 38(14), 9721–9745 (1988).
[CrossRef] [PubMed]

T. Ogawa, T. Takagahara, “Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system,” Phys. Rev. B Condens. Matter 43(17), 14325–14328 (1991).
[CrossRef] [PubMed]

T. Ogawa, T. Takagahara, “Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B Condens. Matter 44(15), 8138–8156 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. J. Lockwood, Z. H. Lu, J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996).
[CrossRef] [PubMed]

Physica E (1)

K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi, K. Murase, “Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach,” Physica E 7(3–4), 337–341 (2000).
[CrossRef]

Science (1)

Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293(5533), 1289–1292 (2001).
[CrossRef] [PubMed]

Solid State Electron. (3)

J. Knoch, S. Mantl, J. Appenzeller, “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices,” Solid State Electron. 51(4), 572–578 (2007).
[CrossRef]

H. D. Barber, “Effective mass and intrinsic concentration in silicon,” Solid State Electron. 10(11), 1039–1051 (1967).
[CrossRef]

M. Uematsu, H. Kageshima, K. Shiraishi, M. Nagase, S. Horiguchi, Y. Takahashi, “Two-dimensional simulation of pattern-dependent oxidation of silicon nanostructures on silicon-on-insulator substrates,” Solid State Electron. 48(6), 1073–1078 (2004).
[CrossRef]

Other (1)

J. C. Hensel, T. G. Phillips, T. M. Rice, and G. A. Thomas, Solid States of Physics (Academic, 1977), Vol. 32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic SOI structure used in the experiment. (b) Schematic illustration of intended Si NW structures surrounded by the thermal oxide SiO2 layer. (c) Si NW structures with gap/width ratio of 1:1 (Type-A), 1:2 (Type-B) and 1:3 (Type-C). One hundred NWs with varied widths are patterned in each type. (d) Si NW structures finished by thermal oxidation from the state (c). (e) Top-view optical microscope photograph of the resultant Si NW sets of Type-A, -B and -C, as shown by the arrows. (f), (g) and (h) SEM images of Si NWs corresponding to Type-A, Type-B and Type-C, respectively. Si widths in each-type of 150, 300 and 450 nm before thermal oxidation were reduced to 50, 219 and 386 nm after oxidation, respectively.

Fig. 2
Fig. 2

(a) Schematic illustration of micro-PL setup. A continuous wave laser light at the wavelength of 325 nm was focused on the surface of the samples in a helium gas-flow cryostat at 12 K. The incidence laser power was about 280 Wcm−2 at the spot diameter of 31 μm on the sample surface. (b), (c) and (d) Optical microscope images of excitation spot on NWs at the Type-A, Type-B and Type-C, respectively.

Fig. 3
Fig. 3

(a), (b) and (c) PL spectra at 12 K from the samples, Type-A, Type-B and Type-C, respectively. (d) PL spectra from the Si substrate. The incidence laser power was about 280 Wcm−2. (e) Schematic pictures showing PL emission from Si NW (bold arrow) and Si substrate at the gap between Si NWs (thin arrow). (f) Theoretical curve fitting to the measured PL spectra in the Type-A sample.

Fig. 4
Fig. 4

(a) Optical microscope image of PL-spectra mapping region in the Si NW sample. Square dotted line shows an area of two-dimensional PL-spectra mapping, while vertical and horizontal dotted arrows indicate scanning directions for mapping in (c), (d) and (e), (f), respectively. (b) Mapping of integrated PL intensity between 1140 and 1180 nm at 12 K. (c) Spatially resolved PL intensity and (d) PL spectra scanned along Si NW of the Si width of 50 nm. (e) Spatially resolved PL intensity and (f) PL spectra scanned perpendicular to the wire direction.

Fig. 5
Fig. 5

(a) and (b) show Si NW width dependences of PL peak energies with different annealing temperatures for the samples in Type-A and Type-B, respectively.

Fig. 6
Fig. 6

(a), (b) and (c) show annealing temperature dependences of PL peak intensities with different widths for the samples in Type-A, Type-B and Type-C, respectively.

Tables (1)

Tables Icon

Table 1 Summarized sets of Si NW structures categorized into Type-A, Type-B and Type-C depending on the NW gap/width ratio. At the lower columns, widths before and after thermal oxidation were shown by the figures out of and within the parentheses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(hν)= I 0 0 h ν ¯ D e (ε) D h (h ν ¯ ε)f(ε, E F e )f(h ν ¯ ε, E F h )dε .
ΔE= π 2 h 2 2 d 2 ( 1 m e * + 1 m h * )

Metrics