Abstract

A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
    [CrossRef]
  2. D. Dragoman, M. Dragoman, Quantum-Classical Analogies(Springer, Berlin, 2004).
    [CrossRef]
  3. C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
    [CrossRef]
  4. A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
    [CrossRef]
  5. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  6. M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef] [PubMed]
  7. L. Maleki, A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004).
    [CrossRef] [PubMed]
  8. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
    [CrossRef]
  9. S.-Y. Tseng, M.-C. Wu, “Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides,” J. Lightwave Technol. 28, 3529–3534 (2010).
  10. X. Xiong, C.-L. Zou, X.-F. Ren, G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097–17107 (2013).
    [CrossRef] [PubMed]
  11. H. Suchowski, G. Porat, A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev., doi: (2013).
    [CrossRef]
  12. K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
    [CrossRef]
  13. D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [CrossRef]
  14. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [CrossRef] [PubMed]
  15. H. S. Park, K. Y. Song, S. H. Yun, B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
    [CrossRef]
  16. The indices i and j of a linearly polarized LPij mode denote the number of asymmetry axes and the number of lobes along the radius, respectively, of the transverse field distribution.
  17. T. A. Birks, P. S. J. Russell, D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
    [CrossRef]
  18. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, USA, 2007).
  19. S. E. Harris, J. E. Field, A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [CrossRef] [PubMed]
  20. K.-J. Boller, A. Imamoğlu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  21. M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  22. Although our scheme is closer to the ladder-type configuration considering the order of the propagation constants, we relate the current scheme to the lambda-type configuration to avoid unnecessary confusion. Whereas the dark state in a ladder-type atomic configuration is not strictly stable, our implementation does not contain decaying processes and therefore has a steady dark state leading to an efficient induced transparency.
  23. P. M. Anisimov, J. P. Dowling, B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
    [CrossRef] [PubMed]
  24. M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
    [CrossRef] [PubMed]
  25. The retained maximum transmission (83%) and the voltage (9.5 Vpp) of the next minimum transmission, however, deviate from 100% and 2 × 4 Vpp, respectively. These discrepancies arise mainly from an off-resonant coupling due to non-uniformity of the fibre and also from the saturation of the acoustic transducer efficiency.
  26. S. H. Autler, C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
    [CrossRef]
  27. H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998).
    [CrossRef]
  28. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
    [CrossRef] [PubMed]

2013

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[CrossRef]

X. Xiong, C.-L. Zou, X.-F. Ren, G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097–17107 (2013).
[CrossRef] [PubMed]

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[CrossRef]

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[CrossRef]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

2011

P. M. Anisimov, J. P. Dowling, B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef] [PubMed]

2010

2009

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
[CrossRef]

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

2006

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

2005

A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2004

M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

L. Maleki, A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004).
[CrossRef] [PubMed]

2002

1998

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998).
[CrossRef]

1996

T. A. Birks, P. S. J. Russell, D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[CrossRef]

1995

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

1991

K.-J. Boller, A. Imamoğlu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

1990

S. E. Harris, J. E. Field, A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

1955

S. H. Autler, C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Alonzo, M.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[CrossRef]

Anisimov, P. M.

P. M. Anisimov, J. P. Dowling, B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef] [PubMed]

Ansmann, M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Arie, A.

H. Suchowski, G. Porat, A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev., doi: (2013).
[CrossRef]

Autler, S. H.

S. H. Autler, C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Bialczak, R. C.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Birks, T. A.

T. A. Birks, P. S. J. Russell, D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[CrossRef]

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998).
[CrossRef]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Ciret, C.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[CrossRef]

Cleland, A. N.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Coda, V.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[CrossRef]

Culverhouse, D. O.

T. A. Birks, P. S. J. Russell, D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[CrossRef]

Dowling, J. P.

P. M. Anisimov, J. P. Dowling, B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef] [PubMed]

Dragoman, D.

D. Dragoman, M. Dragoman, Quantum-Classical Analogies(Springer, Berlin, 2004).
[CrossRef]

Dragoman, M.

D. Dragoman, M. Dragoman, Quantum-Classical Analogies(Springer, Berlin, 2004).
[CrossRef]

Engan, H. E.

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998).
[CrossRef]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Farca, G.

A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Fini, J. M.

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Geller, M. R.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Guo, G.-C.

Harris, S. E.

K.-J. Boller, A. Imamoğlu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Herzog, T.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Hofheinz, M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Huang, Y.-P.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[CrossRef]

Ilchenko, V. S.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

K.-J. Boller, A. Imamoğlu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Kim, B. Y.

H. S. Park, K. Y. Song, S. H. Yun, B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998).
[CrossRef]

Kowligy, A. S.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[CrossRef]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Kumar, P.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[CrossRef]

Kwiat, P.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Longhi, S.

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
[CrossRef]

Lucero, E.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Maleki, L.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Martinis, J. M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Matsko, A. B.

McCusker, K. T.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[CrossRef]

Montemezzani, G.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[CrossRef]

Naweed, A.

A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Neeley, M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Nelson, L. E.

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[CrossRef]

O’Connel, A. D.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Park, H. S.

Paspalakis, E.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[CrossRef]

Porat, G.

H. Suchowski, G. Porat, A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev., doi: (2013).
[CrossRef]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Rangelov, A. A.

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[CrossRef]

Ren, X.-F.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Richardson, D. J.

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[CrossRef]

Rosenberger, A. T.

A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Russell, P. S. J.

T. A. Birks, P. S. J. Russell, D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[CrossRef]

Sanders, B. C.

P. M. Anisimov, J. P. Dowling, B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef] [PubMed]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Sank, D.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Savchenkov, A. A.

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998).
[CrossRef]

Shopova, S. I.

A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Song, K. Y.

Suchowski, H.

H. Suchowski, G. Porat, A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev., doi: (2013).
[CrossRef]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Townes, C. H.

S. H. Autler, C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Tseng, S.-Y.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Wang, H.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Weinfurter, H.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Wenner, J.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Wu, M.-C.

Xiong, X.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, USA, 2007).

Yeh, P.

A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, USA, 2007).

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Yun, S. H.

Zeilinger, A.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Zou, C.-L.

J. Lightwave Technol.

S.-Y. Tseng, M.-C. Wu, “Mode conversion/splitting by optical analogy of multistate stimulated Raman adiabatic passage in multimode waveguides,” J. Lightwave Technol. 28, 3529–3534 (2010).

H. S. Park, K. Y. Song, S. H. Yun, B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[CrossRef]

T. A. Birks, P. S. J. Russell, D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6, 428–436 (1998).
[CrossRef]

Laser Photonics Rev.

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photonics Rev. 3, 243–261 (2009).
[CrossRef]

Nat. Photonics

D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[CrossRef]

Opt. Commun.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258, 30–34 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

S. H. Autler, C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Phys. Rev. A

C. Ciret, M. Alonzo, V. Coda, A. A. Rangelov, G. Montemezzani, “Analog to electromagnetically induced transparency and Autler-Townes effect demonstrated with photoinduced coupled waveguides,” Phys. Rev. A 88, 013840 (2013).
[CrossRef]

A. Naweed, G. Farca, S. I. Shopova, A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Phys. Rev. Lett.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[CrossRef]

P. M. Anisimov, J. P. Dowling, B. C. Sanders, “Objectively discerning Autler-Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett. 107, 163604 (2011).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

K.-J. Boller, A. Imamoğlu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Science

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connel, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis, “Emulation of a quantum spin with a superconducting phase qubit,” Science 325, 722–725 (2009).
[CrossRef] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef] [PubMed]

Other

H. Suchowski, G. Porat, A. Arie, “Adiabatic processes in frequency conversion,” Laser Photonics Rev., doi: (2013).
[CrossRef]

A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, USA, 2007).

The indices i and j of a linearly polarized LPij mode denote the number of asymmetry axes and the number of lobes along the radius, respectively, of the transverse field distribution.

D. Dragoman, M. Dragoman, Quantum-Classical Analogies(Springer, Berlin, 2004).
[CrossRef]

The retained maximum transmission (83%) and the voltage (9.5 Vpp) of the next minimum transmission, however, deviate from 100% and 2 × 4 Vpp, respectively. These discrepancies arise mainly from an off-resonant coupling due to non-uniformity of the fibre and also from the saturation of the acoustic transducer efficiency.

Although our scheme is closer to the ladder-type configuration considering the order of the propagation constants, we relate the current scheme to the lambda-type configuration to avoid unnecessary confusion. Whereas the dark state in a ladder-type atomic configuration is not strictly stable, our implementation does not contain decaying processes and therefore has a steady dark state leading to an efficient induced transparency.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental scheme. (a) Structure of the acoustooptic three-mode coupler. (b) Equivalent lambda-type atomic state configuration. Labels in the parentheses denote corresponding parameters in our scheme. (c) Measured far field patterns of the spatial modes. ωp (ωc): the electromagnetic frequency of the probe (coupling) field, Ωpc): the Rabi frequency by the probe (coupling) field, fp (fc): the probe (coupling) acoustic frequency, Λpc): the probe (coupling) acoustic wavelength, κp (κc): the coupling coefficient by the probe (coupling) acoustic wave. FMF: few-mode fiber, SMF: single-mode fiber, MS: mode stripper, PZT: piezoelectric transducer.

Fig. 2
Fig. 2

Transmission spectra of the LP01 mode: (a) with only the probe acoustic wave that makes 100% coupling between the LP01 mode and the LP01 mode (κp = κ0 = 2π/L). (b) with the coupling wave additionally applied between the LP11 mode and the LP03 mode (κc ≅ 3κ0).

Fig. 3
Fig. 3

Transmission of the LP01 mode at the center wavelength: (a) when only the probe acoustic wave is applied, and (b) when the coupling acoustic wave is applied with the probe amplitude fixed at the voltage of 4 Vpp. The solid line is the fitting result based on Eq. (2).

Fig. 4
Fig. 4

Induced absorption of the LP01 mode with the probe frequency fp detuned by Δfp: (a) transmission at the center wavelength, (b) transmission spectrum for Δfp = +4 kHz, and (c) transmission spectrum for Δfp = −4 kHz. Dashed lines denote the spectra with the coupling acoustic wave turned off.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d A 01 d z = i κ p A 11 e 2 i δ p z , d A 11 d z = i κ p * A 01 e 2 i δ p z + i κ c A 03 e 2 i δ c z , d A 03 d z = i κ c * A 11 e 2 i δ c z ,
T = | κ c | 2 + | κ p | 2 cos ( | κ p | 2 + | κ c | 2 z ) | κ p | 2 + | κ c | 2 .

Metrics