Abstract

We present a method to directly image fluorescent structures inside turbid media. This is based on wave-front shaping to optimize the scattered light onto a single fluorescent particle, as the optical memory effect for a scanning image of the surroundings of this particle. We show that iterating the optimization leads to the focusing on a single particle whose surroundings are subsequently scanned. In combination with a parabolic phase pattern, this method can be extended to a three dimensional imaging method inside turbid media.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [CrossRef]
  2. I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [CrossRef] [PubMed]
  3. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
    [CrossRef] [PubMed]
  4. O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
    [CrossRef]
  5. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
    [CrossRef] [PubMed]
  6. J. H. Park, C. H. Park, H. Yu, Y. H. Cho, Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012).
    [CrossRef] [PubMed]
  7. E. Small, O. Katz, Y. Guan, Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
    [CrossRef]
  8. J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012).
    [CrossRef]
  9. Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012).
    [CrossRef]
  10. R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20, 16532–16543 (2012).
    [CrossRef]
  11. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. D. Lee, Y. K. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
    [CrossRef] [PubMed]
  12. Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
    [CrossRef]
  13. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [CrossRef] [PubMed]
  14. I. M. Vellekoop, C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35, 1245–1247 (2010).
    [CrossRef] [PubMed]
  15. G. Ghielmetti, C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Lett. 20, 3744–3752 (2012).
  16. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
    [CrossRef] [PubMed]
  17. X. Yang, C. L. Hsieh, Y. Pu, D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
    [CrossRef] [PubMed]
  18. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [CrossRef] [PubMed]
  19. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [CrossRef] [PubMed]
  20. I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
    [CrossRef] [PubMed]
  21. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
    [CrossRef]
  22. S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
    [CrossRef] [PubMed]
  23. Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
    [CrossRef] [PubMed]
  24. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
    [CrossRef] [PubMed]
  25. S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
    [CrossRef]
  26. C. Prada, M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20, 151–163 (1994).
    [CrossRef]
  27. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered meta-materials,” Opt. Express 16, 67–80 (2008).
    [CrossRef] [PubMed]
  28. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
    [CrossRef] [PubMed]
  29. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [CrossRef] [PubMed]
  30. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
    [CrossRef] [PubMed]
  31. I. M. Vellekoop, C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
    [CrossRef]

2013 (2)

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. D. Lee, Y. K. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[CrossRef] [PubMed]

2012 (11)

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

X. Yang, C. L. Hsieh, Y. Pu, D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef] [PubMed]

R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20, 16532–16543 (2012).
[CrossRef]

J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012).
[CrossRef]

J. H. Park, C. H. Park, H. Yu, Y. H. Cho, Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012).
[CrossRef] [PubMed]

E. Small, O. Katz, Y. Guan, Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012).
[CrossRef]

G. Ghielmetti, C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Lett. 20, 3744–3752 (2012).

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef] [PubMed]

2011 (6)

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[CrossRef]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

2010 (5)

I. M. Vellekoop, C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35, 1245–1247 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef] [PubMed]

I. M. Vellekoop, C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
[CrossRef]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

2008 (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered meta-materials,” Opt. Express 16, 67–80 (2008).
[CrossRef] [PubMed]

2007 (1)

1994 (1)

C. Prada, M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20, 151–163 (1994).
[CrossRef]

1988 (2)

I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef] [PubMed]

S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef] [PubMed]

1982 (1)

Aegerter, C. M.

G. Ghielmetti, C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Lett. 20, 3744–3752 (2012).

I. M. Vellekoop, C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35, 1245–1247 (2010).
[CrossRef] [PubMed]

I. M. Vellekoop, C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
[CrossRef]

Akbulut, D.

Aubry, A.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

Aulbach, J.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Austin, D. R.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef] [PubMed]

Boccara, A. C.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Bondareff, P.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[CrossRef]

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Chatel, B.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Cho, Y. H.

Choi, H.

Choi, W.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

Choi, Y.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

Conkey, D. B.

Cui, M.

Dasari, R. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[CrossRef] [PubMed]

Feng, S.

I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef] [PubMed]

S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

C. Prada, M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20, 151–163 (1994).
[CrossRef]

Fiolka, R.

Freund, I.

I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef] [PubMed]

Fried, D. L.

Ghielmetti, G.

G. Ghielmetti, C. M. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” Opt. Lett. 20, 3744–3752 (2012).

Gigan, S.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Gjonaj, B.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Grange, R.

Guan, Y.

E. Small, O. Katz, Y. Guan, Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
[CrossRef]

Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012).
[CrossRef]

Ha, J.

Hillman, T. R.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

Hsieh, C. L.

Huisman, T. J.

Jang, J.

Jang, W.

Johnson, P. M.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Kane, C.

S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef] [PubMed]

Katz, O.

E. Small, O. Katz, Y. Guan, Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
[CrossRef]

Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[CrossRef]

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered meta-materials,” Opt. Express 16, 67–80 (2008).
[CrossRef] [PubMed]

Laporte, G.

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef] [PubMed]

Lee, S. D.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Lim, J.

Lue, N.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

McCabe, D. J.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered meta-materials,” Opt. Express 16, 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef] [PubMed]

Oh, W. Y.

Park, C.

Park, C. H.

Park, J. H.

Park, Y. K.

Piestun, R.

Popoff, S. M.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Prada, C.

C. Prada, M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20, 151–163 (1994).
[CrossRef]

Psaltis, D.

Pu, Y.

Rosenbluh, M.

I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef] [PubMed]

Si, K.

Silberberg, Y.

Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012).
[CrossRef]

E. Small, O. Katz, Y. Guan, Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[CrossRef]

Small, E.

E. Small, O. Katz, Y. Guan, Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
[CrossRef]

Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[CrossRef]

So, P. T.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef] [PubMed]

Tajalli, A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

van Putten, E. G.

Vellekoop, I. M.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

Walmsley, I. A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[CrossRef] [PubMed]

Yang, X.

Yaqoob, Z.

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[CrossRef] [PubMed]

Yu, H.

Zhou, J.

Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply-scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4463–4665 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Commun. (2)

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[CrossRef] [PubMed]

Nat. Photonics (3)

O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008).
[CrossRef] [PubMed]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[CrossRef] [PubMed]

Opt. Express (10)

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010).
[CrossRef] [PubMed]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

X. Yang, C. L. Hsieh, Y. Pu, D. Psaltis, “Three-dimensional scanning microscopy through thin turbid media,” Opt. Express 20, 2500–2506 (2012).
[CrossRef] [PubMed]

R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20, 16532–16543 (2012).
[CrossRef]

J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012).
[CrossRef]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered meta-materials,” Opt. Express 16, 67–80 (2008).
[CrossRef] [PubMed]

J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. D. Lee, Y. K. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21, 2890–2902 (2013).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (6)

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111, 243901 (2013).
[CrossRef]

I. Freund, M. Rosenbluh, S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[CrossRef] [PubMed]

S. Feng, C. Kane, P. A. Lee, A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011).
[CrossRef]

Proc. SPIE (1)

I. M. Vellekoop, C. M. Aegerter, “Focusing light through living tissue,” Proc. SPIE 7554, 755430 (2010).
[CrossRef]

Wave Motion (1)

C. Prada, M. Fink, “Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media,” Wave Motion 20, 151–163 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic setup of the experiment. The expanded laser beam goes through a galvo-scanner which allows to move the focus on a xy plane. It then goes on the SLM, and is imaged on the surface of the sample. The fluorescent light is collected by a camera located behind a fluorescence filter. The sample is a 2mm thick glass, with a diffusing 1500 grit polished side. On the back of the glass, there are fluorescent latex beads of 450 nm diameter.

Fig. 2
Fig. 2

Panels a) show a direct image of the fluorescent structures behind the turbid layer, consisting of two 450nm big fluorescent beads, and the transmitted light at the initial state. Panels b) through d) show the transmitted light distribution after successive iterations with 7×7 (b), 14×14 (c) and 28×28 (d) segments on the SLM. The intensity of the focus increases with the number of segments, while the fluorescence intensity decreases eventually due to photobleaching.

Fig. 3
Fig. 3

The topleft panel (a) again shows the direct image of a set of four fluorescent particles (450 nm in diameter) hidden behind a turbid screen. Panel b) shows the transmitted light at the initial state. Panels c) through f) show the transmitted light after successive iterations with 14×14 segments controlled on the SLM. The red squares indicates the positions of the beads. After the fourth iteration with 14×14 segments the system selects one bead and a single focus is left.

Fig. 4
Fig. 4

In the presence of a large number of beads, the iterative scheme still works. a) show a field of view with more than 10 fluorescent sources ant the transmitted light. Panels b) to c) show the field of view (first column) and the transmitted light (second column) after iterations with 7×7 (b), 14×14 (c) and 28×28 (d) segments. At the end there is only a focus on a single fluorescent particle.

Fig. 5
Fig. 5

a) shows the fluorescent beads on the sample, b) shows the focus obtained with 30×30 segments on the SLM and c) shows the result of the scanning. The red squares show the scanning area. The beads which are not in the center of the image are more difficult to detect because of two reasons: they have to be exactly on the xy plane to be detected, and the intensity of the focus decreases the more it is far away from the center.

Metrics