Abstract

We report the fabrication of an optimized low reflective dielectric/metal-layered electrode that provides significant electrical conductivity and light transparency in the near-infrared wavelength regime. By making the metal film thickness thick enough and choosing a proper dielectric layer with a certain thickness, we show that our suggested electrode significantly reduces the light reflection while preserving high electrical conductivity. We demonstrate our optimized electrodes present a highly conductive surface with a sheet resistance of 5.2 Ω/sq and a high light transmittance of near 85% in the near-infrared regime. We also apply our optimized electrode to thin-film organic photovoltaic devices and show the electrode helps in absorbing light energy inside an active layer. We believe that this simple but powerful layered electrode will pave the way for designing transparent electrodes on photoactive devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [CrossRef] [PubMed]
  2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [CrossRef]
  3. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
    [CrossRef] [PubMed]
  4. O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
    [CrossRef] [PubMed]
  5. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
    [CrossRef] [PubMed]
  6. T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
    [CrossRef]
  7. C. Guillén, J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films 520(1), 1–17 (2011).
    [CrossRef]
  8. M. V. Schneider, “Schottky barrier photodiodes with antireflection coating,” Bell Syst. Tech. J. 45(9), 1611–1638 (1966).
    [CrossRef]
  9. H. J. Hovel, “Transparency of thin metal films on semiconductor substrates,” J. Appl. Phys. 47(11), 4968–4970 (1976).
    [CrossRef]
  10. K.-H. Kim, Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3, 1062 (2013).
    [CrossRef] [PubMed]
  11. L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
    [CrossRef]
  12. X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001).
    [CrossRef]
  13. R. Steim, F. R. Kogler, C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem. 20(13), 2499–2512 (2010).
    [CrossRef]
  14. X. Wang, K. P. Chen, M. Zhao, D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to films,” Opt. Express 18(24), 24859–24867 (2010).
    [CrossRef] [PubMed]
  15. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
    [CrossRef] [PubMed]
  16. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor and Francis, 2010).
  17. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
    [CrossRef]
  18. G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
    [CrossRef]
  19. J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
    [CrossRef] [PubMed]
  20. D. B. Fraser, H. D. Cook, “Highly conductive, transparent films of sputtered In[sub 2−x]Sn[sub x]O[sub 3−y],” J. Electrochem. Soc. 119(10), 1368–1374 (1972).
    [CrossRef]
  21. B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
    [CrossRef]

2013

K.-H. Kim, Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3, 1062 (2013).
[CrossRef] [PubMed]

2012

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

2011

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

C. Guillén, J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films 520(1), 1–17 (2011).
[CrossRef]

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[CrossRef] [PubMed]

2010

R. Steim, F. R. Kogler, C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem. 20(13), 2499–2512 (2010).
[CrossRef]

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

X. Wang, K. P. Chen, M. Zhao, D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to films,” Opt. Express 18(24), 24859–24867 (2010).
[CrossRef] [PubMed]

2009

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

2008

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

2007

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

2005

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

2001

X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001).
[CrossRef]

1976

H. J. Hovel, “Transparency of thin metal films on semiconductor substrates,” J. Appl. Phys. 47(11), 4968–4970 (1976).
[CrossRef]

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[CrossRef]

1972

D. B. Fraser, H. D. Cook, “Highly conductive, transparent films of sputtered In[sub 2−x]Sn[sub x]O[sub 3−y],” J. Electrochem. Soc. 119(10), 1368–1374 (1972).
[CrossRef]

1966

M. V. Schneider, “Schottky barrier photodiodes with antireflection coating,” Bell Syst. Tech. J. 45(9), 1611–1638 (1966).
[CrossRef]

An, K.-H.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Andersson, L. M.

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

Andersson, M. R.

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

Böberl, M.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Brabec, C. J.

R. Steim, F. R. Kogler, C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem. 20(13), 2499–2512 (2010).
[CrossRef]

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

Cai, X.

X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001).
[CrossRef]

Chan, C.

L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Chen, K. P.

Chueh, C.-C.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Cook, H. D.

D. B. Fraser, H. D. Cook, “Highly conductive, transparent films of sputtered In[sub 2−x]Sn[sub x]O[sub 3−y],” J. Electrochem. Soc. 119(10), 1368–1374 (1972).
[CrossRef]

Cyr, P. W.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Dante, M.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Dennler, G.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

Forberich, K.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

Fraser, D. B.

D. B. Fraser, H. D. Cook, “Highly conductive, transparent films of sputtered In[sub 2−x]Sn[sub x]O[sub 3−y],” J. Electrochem. Soc. 119(10), 1368–1374 (1972).
[CrossRef]

Fromherz, T.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

Fürst, J.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Guillén, C.

C. Guillén, J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films 520(1), 1–17 (2011).
[CrossRef]

Haacke, G.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[CrossRef]

Haughn, C.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Hayden, O.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Hecht, D. S.

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Heeger, A. J.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Heiss, W.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Hellström, S.

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

Herrero, J.

C. Guillén, J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films 520(1), 1–17 (2011).
[CrossRef]

Hesser, G.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Hingerl, K.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

Hovel, H. J.

H. J. Hovel, “Transparency of thin metal films on semiconductor substrates,” J. Appl. Phys. 47(11), 4968–4970 (1976).
[CrossRef]

Hu, L.

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Inganäs, O.

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

Irvin, G.

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Jen, A. K.-Y.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Jin, C.

X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001).
[CrossRef]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Kim, K.-H.

K.-H. Kim, Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3, 1062 (2013).
[CrossRef] [PubMed]

Klem, E. J. D.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Kogler, F. R.

R. Steim, F. R. Kogler, C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem. 20(13), 2499–2512 (2010).
[CrossRef]

Kolská, Z.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[CrossRef] [PubMed]

Konstantatos, G.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Kovalenko, M. V.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Lee, K.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Lemmer, U.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Levina, L.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Li, C.-Z.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Liu, X.

X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001).
[CrossRef]

Lyutakov, O.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[CrossRef] [PubMed]

Maldonado, J.-L.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Mao, J.

X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001).
[CrossRef]

McDonald, S. A.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Moses, D.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Nguyen, T.-Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Nolte, D. D.

O’Connor, B.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Park, Q.-H.

K.-H. Kim, Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3, 1062 (2013).
[CrossRef] [PubMed]

Pipe, K. P.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Rauch, T.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Rybka, V.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[CrossRef] [PubMed]

Salinas, J.-F.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Sargent, E. H.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Scharber, M. C.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

Schneider, M. V.

M. V. Schneider, “Schottky barrier photodiodes with antireflection coating,” Bell Syst. Tech. J. 45(9), 1611–1638 (1966).
[CrossRef]

Sheng, P.

L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Shtein, M.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Siegel, J.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[CrossRef] [PubMed]

Steim, R.

R. Steim, F. R. Kogler, C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem. 20(13), 2499–2512 (2010).
[CrossRef]

Svorcík, V.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[CrossRef] [PubMed]

Tedde, S. F.

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

Tomiš, I.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

Tvingstedt, K.

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

Wang, X.

Wen, W.

L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Yip, H.-L.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Zhang, F.

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

Zhang, S.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Zhao, M.

Zhou, L.

L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Adv. Mater.

O. Inganäs, F. Zhang, K. Tvingstedt, L. M. Andersson, S. Hellström, M. R. Andersson, “Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures,” Adv. Mater. 22(20), E100–E116 (2010).
[CrossRef] [PubMed]

D. S. Hecht, L. Hu, G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, A. K.-Y. Jen, “Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Appl. Surf. Sci.

X. Liu, X. Cai, J. Mao, C. Jin, “ZnS/Ag/ZnS nano-multilayer films for transparent electrodes in flat display application,” Appl. Surf. Sci. 183(1-2), 103–110 (2001).
[CrossRef]

Bell Syst. Tech. J.

M. V. Schneider, “Schottky barrier photodiodes with antireflection coating,” Bell Syst. Tech. J. 45(9), 1611–1638 (1966).
[CrossRef]

J. Appl. Phys.

H. J. Hovel, “Transparency of thin metal films on semiconductor substrates,” J. Appl. Phys. 47(11), 4968–4970 (1976).
[CrossRef]

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47(9), 4086–4089 (1976).
[CrossRef]

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[CrossRef]

J. Electrochem. Soc.

D. B. Fraser, H. D. Cook, “Highly conductive, transparent films of sputtered In[sub 2−x]Sn[sub x]O[sub 3−y],” J. Electrochem. Soc. 119(10), 1368–1374 (1972).
[CrossRef]

J. Mater. Chem.

R. Steim, F. R. Kogler, C. J. Brabec, “Interface materials for organic solar cells,” J. Mater. Chem. 20(13), 2499–2512 (2010).
[CrossRef]

Nanoscale Res. Lett.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett. 6(1), 96 (2011).
[CrossRef] [PubMed]

Nat. Mater.

S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics,” Nat. Mater. 4(2), 138–142 (2005).
[CrossRef] [PubMed]

Nat. Photonics

T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, “Near-infrared imaging with quantum-dot-sensitized organic photodiodes,” Nat. Photonics 3(6), 332–336 (2009).
[CrossRef]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

L. Zhou, W. Wen, C. Chan, P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[CrossRef]

Sci. Rep.

K.-H. Kim, Q.-H. Park, “Perfect anti-reflection from first principles,” Sci. Rep. 3, 1062 (2013).
[CrossRef] [PubMed]

Science

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[CrossRef] [PubMed]

Thin Solid Films

C. Guillén, J. Herrero, “TCO/metal/TCO structures for energy and flexible electronics,” Thin Solid Films 520(1), 1–17 (2011).
[CrossRef]

Other

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor and Francis, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) The schematic diagram of the low reflective dielectric/metal electrode composed of ZnS and Gold on a Si substrate. The light illuminated from outside of device and transmitted into the Si substrate. b) The picture of fabricated electrodes on a Si substrate. The electrode structures are composed of ZnS 45 nm/Au 15 nm/Ti 1 nm/Si (A), ZnS 55 nm/Au 15 nm/Ti 1 nm/Si (B), ZnS 65 nm/Au 15 nm/Ti 1 nm/Si (C), Si (D), and Au 15 nm/Ti 1 nm/Si (E).

Fig. 2
Fig. 2

Light reflectance and transmittance spectra: a) measured reflectance, b) numerically calculated reflectance, c) experimentally obtained transmittance, and d) calculated transmittance.

Fig. 3
Fig. 3

Figure of merit for ZnS/Au electrodes on a Si substrate using light transmittance and a measured sheet resistance of 5.2 Ω/sq. The peak values of electrode A, B and C are 0.035, 0.037 and 0.025, respectively.

Fig. 4
Fig. 4

The schematic diagram of analyzed OPV structures and calculated light absorbance spectra in P3HT:PCBM (active layer) as a function of the thickness of the active layer. The used TCEs are: a) ITO 350 nm (ITO350), b) Ag 15 nm (Ag15), and c) TeO2 30 nm/Ag 15 nm (TeO230/Ag15). The maximum absorbance is achieved at a thickness of P3HT:PCBM of 90 nm (white dashed line). d) The comparison of absorbance spectra by using different TCEs. e) The calculated short-circuit current density as a function of thickness of P3HT:PCBM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T= 4 n i 2 n d 2 Y 0 | ( n d Y mI i n d 2 Y 0 i n i Y mR )sin( k 0 n d t d )+( n d n i Y 0 + n d Y mR +i n i Y mI )cos( k 0 n d t d ) | 2
( E d H d )= l=1 N1 ( cos ϕ l i n l 1 sin ϕ l i n l sin ϕ l cos ϕ l )( α n s Y 0 α )
t d = λ 0 4π n d [ tan 1 ( 2 n d Y 0 Y mI n d 2 Y 0 2 Y mR 2 Y mI 2 )+sπ ], s=1,3,5...

Metrics