Abstract

We report on factors affecting the performance of a broadband, mid-IR absorber based on multiple, alternating dielectric / metal layers. In particular, we investigate the effect of interface roughness. Atomic layer deposition produces both a dramatic suppression of the interface roughness and a significant increase in the optical absorption as compared to devices fabricated using a conventional thermal evaporation source. Absorption characteristics greater than 80% across a 300 K black body spectrum are achieved. We demonstrate a further increase in this absorption via the inclusion of a patterned, porous anti-reflection layer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. E. Narimanov, A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
    [CrossRef]
  2. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
  3. Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
    [CrossRef] [PubMed]
  4. T. D. Corrigan, D. H. Park, H. D. Drew, S.-H. Guo, P. W. Kolb, W. N. Herman, R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012).
    [CrossRef] [PubMed]
  5. W. Streyer, S. Law, G. Rooney, T. Jacobs, D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
    [CrossRef] [PubMed]
  6. J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
    [CrossRef] [PubMed]
  7. V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [CrossRef]
  8. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [CrossRef]
  9. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  11. Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [CrossRef]
  12. M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [CrossRef]
  13. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [CrossRef]
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  15. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [CrossRef]
  16. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  17. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  18. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
    [CrossRef] [PubMed]
  19. J. J. Monzón, T. Yonte, L. L. Sánchez-Soto, Á. Felipe, “Optimized broadband wide-angle absorber structures,” Appl. Opt. 47(34), 6366–6370 (2008).
    [CrossRef] [PubMed]
  20. P. Eriksson, J. Y. Andersson, G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
    [CrossRef]
  21. J. J. Monzón, L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33(22), 5137–5141 (1994).
    [CrossRef] [PubMed]
  22. A. D. Parsons, D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
    [CrossRef]
  23. M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [CrossRef] [PubMed]
  24. H. A. Macleod, Thin-film Optical Filters, 3rd ed. (Institute of Physics Publishing, London 2001).
  25. H. Kim, S. M. Rossnagel, “Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition,” J. Vac. Sci. Technol. A 20(3), 802–808 (2002).
    [CrossRef]
  26. D. H. Park, C. H. Lee, W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14(19), 8866–8884 (2006).
    [CrossRef] [PubMed]
  27. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  28. X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
    [CrossRef]
  29. K. B. Nguyen, T. D. Nguyen, “Defect coverage profile and propagation of roughness of sputter‐deposited Mo/Si multilayer coating for extreme ultraviolet projection lithography,” J. Vac. Sci. Technol. B 11(6), 2964–2970 (1993).
    [CrossRef]
  30. A. L. Barabási and H. E. Stanley, Fractal concepts in surface growth (Cambridge University Press, 1995)
  31. M. Matsubara, I. Hirabayashi, “Preparation of ultra-flat YBCO thin films by MOCVD layer-by-layer deposition,” Appl. Surf. Sci. 82, 494–500 (1994).
    [CrossRef]
  32. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethyl-aluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
    [CrossRef]
  33. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
    [CrossRef] [PubMed]
  34. I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
    [CrossRef] [PubMed]
  35. P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
    [CrossRef] [PubMed]
  36. E. Hecht, “Principles of Optics”, 2nd ed. (Addison-Wesley, Reading, MA, 1987), p. 375.
  37. L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
    [CrossRef]
  38. E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
    [CrossRef]

2013 (1)

2012 (2)

T. D. Corrigan, D. H. Park, H. D. Drew, S.-H. Guo, P. W. Kolb, W. N. Herman, R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012).
[CrossRef] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

2011 (2)

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

2010 (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[CrossRef] [PubMed]

2009 (7)

E. E. Narimanov, A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[CrossRef] [PubMed]

E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

2008 (10)

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

J. J. Monzón, T. Yonte, L. L. Sánchez-Soto, Á. Felipe, “Optimized broadband wide-angle absorber structures,” Appl. Opt. 47(34), 6366–6370 (2008).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethyl-aluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[CrossRef]

L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
[CrossRef]

2002 (1)

H. Kim, S. M. Rossnagel, “Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition,” J. Vac. Sci. Technol. A 20(3), 802–808 (2002).
[CrossRef]

1994 (3)

J. J. Monzón, L. L. Sánchez-Soto, “Optical performance of absorber structures for thermal detectors,” Appl. Opt. 33(22), 5137–5141 (1994).
[CrossRef] [PubMed]

M. Matsubara, I. Hirabayashi, “Preparation of ultra-flat YBCO thin films by MOCVD layer-by-layer deposition,” Appl. Surf. Sci. 82, 494–500 (1994).
[CrossRef]

P. Eriksson, J. Y. Andersson, G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

1993 (1)

K. B. Nguyen, T. D. Nguyen, “Defect coverage profile and propagation of roughness of sputter‐deposited Mo/Si multilayer coating for extreme ultraviolet projection lithography,” J. Vac. Sci. Technol. B 11(6), 2964–2970 (1993).
[CrossRef]

1988 (1)

A. D. Parsons, D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Andersson, J. Y.

P. Eriksson, J. Y. Andersson, G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Andrä, G.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Averitt, R. D.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Banerjee, P.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[CrossRef] [PubMed]

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

Chen, T. P.

E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
[CrossRef]

L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
[CrossRef]

Christiansen, S.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Corrigan, T. D.

Diem, M.

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Ding, L.

E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
[CrossRef]

L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
[CrossRef]

Drew, H. D.

Eriksson, P.

P. Eriksson, J. Y. Andersson, G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Falk, F.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Felipe, Á.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Fung, S.

L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

George, S. M.

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Goh, E. S. M.

E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Guo, S.-H.

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Henn-Lecordier, L.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[CrossRef] [PubMed]

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Herman, W. N.

Hirabayashi, I.

M. Matsubara, I. Hirabayashi, “Preparation of ultra-flat YBCO thin films by MOCVD layer-by-layer deposition,” Appl. Surf. Sci. 82, 494–500 (1994).
[CrossRef]

Huang, Z.

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Jacobs, T.

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

Kildishev, A. V.

E. E. Narimanov, A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Kim, H.

H. Kim, S. M. Rossnagel, “Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition,” J. Vac. Sci. Technol. A 20(3), 802–808 (2002).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Kolb, P. W.

Koschny, T.

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Lai, F.

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Law, S.

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Lee, C. H.

Lee, S. B.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[CrossRef] [PubMed]

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Lin, L.

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Liu, Y.

E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
[CrossRef]

L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
[CrossRef]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Lv, J.

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Matsubara, M.

M. Matsubara, I. Hirabayashi, “Preparation of ultra-flat YBCO thin films by MOCVD layer-by-layer deposition,” Appl. Surf. Sci. 82, 494–500 (1994).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Monzón, J. J.

Narimanov, E. E.

E. E. Narimanov, A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Ng, C. Y.

L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
[CrossRef]

Nguyen, K. B.

K. B. Nguyen, T. D. Nguyen, “Defect coverage profile and propagation of roughness of sputter‐deposited Mo/Si multilayer coating for extreme ultraviolet projection lithography,” J. Vac. Sci. Technol. B 11(6), 2964–2970 (1993).
[CrossRef]

Nguyen, T. D.

K. B. Nguyen, T. D. Nguyen, “Defect coverage profile and propagation of roughness of sputter‐deposited Mo/Si multilayer coating for extreme ultraviolet projection lithography,” J. Vac. Sci. Technol. B 11(6), 2964–2970 (1993).
[CrossRef]

Ose, E.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Park, D. H.

Parsons, A. D.

A. D. Parsons, D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[CrossRef]

Pedder, D. J.

A. D. Parsons, D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[CrossRef]

Perez, I.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[CrossRef] [PubMed]

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Phaneuf, R. J.

Pietsch, M.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethyl-aluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[CrossRef]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Robertson, E.

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Rooney, G.

Rossnagel, S. M.

H. Kim, S. M. Rossnagel, “Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition,” J. Vac. Sci. Technol. A 20(3), 802–808 (2002).
[CrossRef]

Rubloff, G. W.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[CrossRef] [PubMed]

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Sánchez-Soto, L. L.

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Shvets, G.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Son, S. J.

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Stelzner, Th.

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Stemme, G.

P. Eriksson, J. Y. Andersson, G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Streyer, W.

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Sun, C. Q.

E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
[CrossRef]

Tao, H.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wasserman, D.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Wu, C.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Wu, X.

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Yan, Q.

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Yonte, T.

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Zhuang, B.

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

E. E. Narimanov, A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Appl. Surf. Sci. (2)

X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, “Optical inhomogeneity of ZnS films deposited by thermal evaporation,” Appl. Surf. Sci. 254(20), 6455–6460 (2008).
[CrossRef]

M. Matsubara, I. Hirabayashi, “Preparation of ultra-flat YBCO thin films by MOCVD layer-by-layer deposition,” Appl. Surf. Sci. 82, 494–500 (1994).
[CrossRef]

Chem. Rev. (1)

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethyl-aluminum/water process,” J. Appl. Phys. 97(12), 121301 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (2)

A. D. Parsons, D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A 6(3), 1686–1689 (1988).
[CrossRef]

H. Kim, S. M. Rossnagel, “Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition,” J. Vac. Sci. Technol. A 20(3), 802–808 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. B. Nguyen, T. D. Nguyen, “Defect coverage profile and propagation of roughness of sputter‐deposited Mo/Si multilayer coating for extreme ultraviolet projection lithography,” J. Vac. Sci. Technol. B 11(6), 2964–2970 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

E. S. M. Goh, T. P. Chen, C. Q. Sun, L. Ding, Y. Liu, “Design of a Near-Perfect Anti Reflective Layer for Si Photodetectors Based on a SiO2 Film Embedded with Si Nanocrystals,” Jpn. J. Appl. Phys. 48(6), 060206 (2009).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

Th. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[CrossRef] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (7)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[CrossRef]

L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72(12), 125419 (2005).
[CrossRef]

V. G. Kravets, F. Schedin, A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[CrossRef]

M. Diem, T. Koschny, C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Phys. Scr. T (1)

P. Eriksson, J. Y. Andersson, G. Stemme, “Interferometric, low thermal mass IR-absorber for thermal infrared detectors,” Phys. Scr. T 54, 165–168 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Small (1)

I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, G. W. Rubloff, “TEM-Based Metrology for HfO2 Layers and Nanotubes Formed in Anodic Aluminum Oxide Nanopore Structures,” Small 4(8), 1223–1232 (2008).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (3)

A. L. Barabási and H. E. Stanley, Fractal concepts in surface growth (Cambridge University Press, 1995)

E. Hecht, “Principles of Optics”, 2nd ed. (Addison-Wesley, Reading, MA, 1987), p. 375.

H. A. Macleod, Thin-film Optical Filters, 3rd ed. (Institute of Physics Publishing, London 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of structures (not to scale) for absorber devices consisting of: (a) multiple periods of thick barium fluoride layers separated by thin nichrome layers on a silver coated silicon substrate, (b) multiple periods of thick Al2O3 layers separated by thin Ti layers on an Al-coated sapphire substrate, (c) high aspect ratio patterned Al2O3 layer on top of 2 period absorber.

Fig. 2
Fig. 2

(a) Calculated (dashed) and experimental (solid) absorption for 2 and 10 period absorbers. Each period consists of a thermally evaporated 1.8 μm thick BaF2 layer and a 2 nm thick nichrome layer. (b) Experimental (solid) absorption for thermally evaporated 2 and 10 period absorbers in which a 1.16 um thick alumina layer and a 2 nm Ti layer are substituted for 1.8 μm thick BaF2 layer and a 2 nm thick nichrome layer. Also shown is a calculated 300 K blackbody radiation curve (dashed).

Fig. 3
Fig. 3

AFM images on top of (a) second period of thermal evaporated barium fluoride layer and (b) second period of alumina layer grown by ALD (as labeled in (c)). Note the 4-fold reduction in height scale. (c) log-log plot of rms roughness from top of each period of thermally evaporated barium fluoride (green square), thermally evaporated alumina (red triangle), and ALD alumina layer (blue circle) as a function of accumulated thickness. The surface roughness from bottom reflection Al layer is shown as a blue circle at 0.1 um thickness. (d) SEM images of 5 period ALD alumina layers intermediated by 2 nm thick Ti layers.

Fig. 4
Fig. 4

Calculated (dashed) and experimental (solid) absorption from (a) 2 periods and (b) 10 periods of an ALD alumina layer intermediated by a thermally deposited 2 nm thick titanium layer. (c) Empirically determined real (N) and imaginary (K) components of the alumina's refractive index. The Bragg resonance near 3.85 μm is indicated by the arrow in (a).

Fig. 5
Fig. 5

SEM images of SU8 resist mask: (a) taken at tilted stage of 35° with inset of more than 8 um tall resist pillars. (b) AFM and SEM images of patterned AR layer with pits: 1.3 μm wide, 2.4 μm deep, and period spacing of 2.8 μm. (c) Calculated (dashed) and experimental (solid) absorption from 2 periods (orange, blue) and 10 periods (red) of ALD alumina layers coated with the patterned AR layer and calculated 300K blackbody radiation (gray). (d) Calculated (line) and experimental (dot) absorption integrated between in the wavelength range between 4 and 40 μm for multiple period of ALD alumina layers coated with (red) or without (blue) the AR layer. Absorption was integrated only up to 24 μm wavelength for 2 period ALD alumina layers coated with AR layer due to lack of data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(λ)=E(λ)=1R(λ),
n i (λ)= n air n A l 2 O 3 (λ) ,
d(λ)=λ/4n(λ)
ε i ε A l 2 O 3 ε i +2 ε A l 2 O 3 = ε air ε A l 2 O 3 ε air +2 ε A l 2 O 3 f

Metrics