Abstract

The thermal stability of dielectric liquid lenses is studied by measuring the focal length at different temperatures. Two types of liquids lenses are investigated: Type-I (SL-5267/glycerol) and Type-II (glycerol/ BK7 matching liquid). A threshold-like behavior is found. Below the threshold temperature, the focal length is temperature insensitive. Above the threshold, the focal length changes exponentially with the temperature. Both refractive index and surface profile are responsible for the focal length change, although the former decreases linearly with the temperature. The threshold temperature of Type-I and Type-II liquid lens are 60°C and 40°C, respectively. Type-I lens shows a good temperature stability in a wide range. Moreover, the lens can recover to its original state even though it is operated at a high temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  2. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  3. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
    [CrossRef]
  4. G. Zhou, H. M. Leung, H. Yu, A. S. Kumar, and F. S. Chau, “Liquid tunable diffractive/refractive hybrid lens,” Opt. Lett. 34(18), 2793–2795 (2009).
    [CrossRef] [PubMed]
  5. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [CrossRef] [PubMed]
  6. B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
    [CrossRef] [PubMed]
  7. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [CrossRef] [PubMed]
  8. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
    [CrossRef]
  9. U. Zabit, R. Atashkhooei, T. Bosch, S. Royo, F. Bony, and A. D. Rakic, “Adaptive self-mixing vibrometer based on a liquid lens,” Opt. Lett. 35(8), 1278–1280 (2010).
    [CrossRef] [PubMed]
  10. J. K. Lee, K. W. Park, H. R. Kim, and S. H. Kong, “Durability enhancement of a microelectromechanical system-based liquid droplet lens,” Jpn. J. Appl. Phys. 49, 06GN11 (2010).
  11. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
    [CrossRef]
  12. C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
    [CrossRef]
  13. D. Koyama, R. Isago, and K. Nakamura, “Compact, high-speed variable-focus liquid lens using acoustic radiation force,” Opt. Express 18(24), 25158–25169 (2010).
    [CrossRef] [PubMed]
  14. J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011).
    [CrossRef]
  15. B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” 18th IEEE International Conference on Micro Electro Mechanical Systems, 227–230 (2005).
  16. Y. Park, S. Seo, P. Gruenberg, and J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013).
    [CrossRef]
  17. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
    [CrossRef] [PubMed]
  18. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [CrossRef] [PubMed]
  19. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  20. H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
    [CrossRef] [PubMed]
  21. H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
    [CrossRef] [PubMed]
  22. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Electro-optical properties of dielectric liquid microlens,” Opt. Commun. 284(8), 2122–2125 (2011).
    [CrossRef]
  23. S. Xu, H. Ren, Y. Liu, and S. T. Wu, “Dielectric liquid microlens with switchable negative and positive optical power,” J. MEMS 20(1), 297–301 (2011).
    [CrossRef]
  24. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [CrossRef]
  25. J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1(1), 51–61 (2005).
    [CrossRef]
  26. http://en.wikipedia.org/wiki/Surface_tension .
  27. J. D. Bernardin, I. Mudawar, C. B. Walsh, and E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997).
    [CrossRef]

2013 (1)

Y. Park, S. Seo, P. Gruenberg, and J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013).
[CrossRef]

2011 (6)

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011).
[CrossRef]

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Electro-optical properties of dielectric liquid microlens,” Opt. Commun. 284(8), 2122–2125 (2011).
[CrossRef]

S. Xu, H. Ren, Y. Liu, and S. T. Wu, “Dielectric liquid microlens with switchable negative and positive optical power,” J. MEMS 20(1), 297–301 (2011).
[CrossRef]

H. Ren, S. Xu, D. Ren, and S. T. Wu, “Novel optical switch with a reconfigurable dielectric liquid droplet,” Opt. Express 19(3), 1985–1990 (2011).
[CrossRef] [PubMed]

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, “Electrowetting driven optical switch and tunable aperture,” Opt. Express 19(16), 15525–15531 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (3)

2008 (2)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[CrossRef]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

2005 (2)

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

J. Li, C. H. Wen, S. Gauza, R. B. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1(1), 51–61 (2005).
[CrossRef]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

2003 (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

1997 (1)

J. D. Bernardin, I. Mudawar, C. B. Walsh, and E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997).
[CrossRef]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

An, J. Y.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011).
[CrossRef]

Atashkhooei, R.

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Berge, B.

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” 18th IEEE International Conference on Micro Electro Mechanical Systems, 227–230 (2005).

Bernardin, J. D.

J. D. Bernardin, I. Mudawar, C. B. Walsh, and E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997).
[CrossRef]

Bony, F.

Bosch, T.

Chau, F. S.

Cheng, C. C.

Cheng, L.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Franses, E. I.

J. D. Bernardin, I. Mudawar, C. B. Walsh, and E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997).
[CrossRef]

Gauza, S.

Gruenberg, P.

Y. Park, S. Seo, P. Gruenberg, and J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Hirsa, A. H.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[CrossRef]

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

Hur, J. H.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011).
[CrossRef]

Isago, R.

Ishikawa, M.

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[CrossRef]

Jiang, H. R.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Kim, H. R.

J. K. Lee, K. W. Park, H. R. Kim, and S. H. Kong, “Durability enhancement of a microelectromechanical system-based liquid droplet lens,” Jpn. J. Appl. Phys. 49, 06GN11 (2010).

Kim, S.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011).
[CrossRef]

Kong, S. H.

J. K. Lee, K. W. Park, H. R. Kim, and S. H. Kong, “Durability enhancement of a microelectromechanical system-based liquid droplet lens,” Jpn. J. Appl. Phys. 49, 06GN11 (2010).

Koyama, D.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Kumar, A. S.

Lee, C. C.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

Lee, J. H.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011).
[CrossRef]

Lee, J. K.

J. K. Lee, K. W. Park, H. R. Kim, and S. H. Kong, “Durability enhancement of a microelectromechanical system-based liquid droplet lens,” Jpn. J. Appl. Phys. 49, 06GN11 (2010).

Lee, J.-H.

Y. Park, S. Seo, P. Gruenberg, and J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013).
[CrossRef]

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[CrossRef]

Leung, H. M.

Li, J.

Liu, Y.

S. Xu, H. Ren, Y. Liu, and S. T. Wu, “Dielectric liquid microlens with switchable negative and positive optical power,” J. MEMS 20(1), 297–301 (2011).
[CrossRef]

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Electro-optical properties of dielectric liquid microlens,” Opt. Commun. 284(8), 2122–2125 (2011).
[CrossRef]

López, C. A.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[CrossRef]

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

Lu, R. B.

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Malouin, B. A.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Mudawar, I.

J. D. Bernardin, I. Mudawar, C. B. Walsh, and E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997).
[CrossRef]

Mugele, F.

Murade, C. U.

Murali, S.

Nakamura, K.

Oh, J. M.

Oku, H.

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[CrossRef]

Olles, J. D.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Park, K. W.

J. K. Lee, K. W. Park, H. R. Kim, and S. H. Kong, “Durability enhancement of a microelectromechanical system-based liquid droplet lens,” Jpn. J. Appl. Phys. 49, 06GN11 (2010).

Park, Y.

Y. Park, S. Seo, P. Gruenberg, and J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013).
[CrossRef]

Rakic, A. D.

Ren, D.

Ren, H.

Rolland, J. P.

Royo, S.

Seo, S.

Y. Park, S. Seo, P. Gruenberg, and J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013).
[CrossRef]

Thompson, K. P.

van den Ende, D.

Vogel, M. J.

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Walsh, C. B.

J. D. Bernardin, I. Mudawar, C. B. Walsh, and E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997).
[CrossRef]

Wen, C. H.

Wu, S. T.

Xianyu, H.

Xu, S.

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Yeh, J. A.

Yu, H.

Zabit, U.

Zhou, G.

Appl. Phys. Lett. (5)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90(12), 121129 (2007).
[CrossRef]

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005).
[CrossRef]

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Park, S. Seo, P. Gruenberg, and J.-H. Lee, “Self-centering effect of a thickness-gradient dielectric of an electrowetting liquid lens,” IEEE Photon. Technol. Lett. 25(6), 623–625 (2013).
[CrossRef]

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, “Spherically encapsulated variable liquid lens on coplanar electrodes,” IEEE Photon. Technol. Lett. 23(22), 1703–1705 (2011).
[CrossRef]

Int. J. Heat Mass Tran. (1)

J. D. Bernardin, I. Mudawar, C. B. Walsh, and E. I. Franses, “Contact angle temperature dependence for water droplets on practical aluminum surfaces,” Int. J. Heat Mass Tran. 40(5), 1017–1033 (1997).
[CrossRef]

J. Display Technol. (1)

J. MEMS (1)

S. Xu, H. Ren, Y. Liu, and S. T. Wu, “Dielectric liquid microlens with switchable negative and positive optical power,” J. MEMS 20(1), 297–301 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. K. Lee, K. W. Park, H. R. Kim, and S. H. Kong, “Durability enhancement of a microelectromechanical system-based liquid droplet lens,” Jpn. J. Appl. Phys. 49, 06GN11 (2010).

Lab Chip (1)

B. A. Malouin, M. J. Vogel, J. D. Olles, L. Cheng, and A. H. Hirsa, “Electromagnetic liquid pistons for capillarity-based pumping,” Lab Chip 11(3), 393–397 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[CrossRef]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. R. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Electro-optical properties of dielectric liquid microlens,” Opt. Commun. 284(8), 2122–2125 (2011).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Other (2)

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” 18th IEEE International Conference on Micro Electro Mechanical Systems, 227–230 (2005).

http://en.wikipedia.org/wiki/Surface_tension .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dielectric liquid lens structure and experimental setup: (a) side-view of the dielectric liquid droplet lens, and (b) experimental setup for measuring the focal length at various temperatures.

Fig. 2
Fig. 2

Image of letter “A” observed through the Type-1 liquid lens at various temperatures: (a) 23°C, (b) 70°C, (c) 100 °C and (d) 130 °C. The diameter of the droplet is 152 μm.

Fig. 3
Fig. 3

Focal length of four Type-1 liquid lenses measured at various temperatures.

Fig. 4
Fig. 4

Image of letter “A” observed through the Type-2 liquid lens at various temperatures: (a) 23 °C, (b) 50 °C, (c) 70 °C, and (d) 100 °C. The diameter of the glycerol droplet is 85 μm.

Fig. 5
Fig. 5

Temperature dependent focal length of two Type-II liquid lenses.

Fig. 6
Fig. 6

Temperature hysteresis test of Type-I liquid lens with 304-μm aperture.

Fig. 7
Fig. 7

Refractive index of three liquids versus temperature change.

Fig. 8
Fig. 8

Focal length vs. temperature.

Tables (2)

Tables Icon

Table 1 Physical Properties of the Three Liquids Employed

Tables Icon

Table 2 Fitting Parameters f0, A and T0 for Curves Shown in Fig. 3 and Fig. 5

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

γ L1,L2 cosθ= γ L1,S γ L2,S ,
f= 3 V d π(1cosθ)(2 cos 2 θcosθ) ( n 1 n 2 ) 3 3 ,
f = f 0 + A e T T 0 ,
f= 1 n 1 n 2 3 V d π(1cosθ)(2 cos 2 θcosθ) 3 = k n (T)× 3 V d π(1cosθ)(2 cos 2 θcosθ) 3 ,
k n ( T )= 1 ( A 1 A 2 )+( B 1 B 2 )*T ,
cosθ=1+C ( T co T) a (ba) ,

Metrics