M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: A comparative study,” Phys. Rev. B 87(24), 245134 (2013).

[CrossRef]

D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B 87(11), 115143 (2013).

[CrossRef]

Y. Li, Y. Wu, X. Chen, and J. Mei, “Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals,” Opt. Express 21(6), 7699–7711 (2013).

[CrossRef]
[PubMed]

Y. Wu and J. Li, “Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects,” Appl. Phys. Lett. 102(18), 183105 (2013).

[CrossRef]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).

[CrossRef]

N. Engheta, “Materials Science. Pursuing Near-Zero Response,” Science 340(6130), 286–287 (2013).

[CrossRef]
[PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).

[CrossRef]
[PubMed]

D. Torrent and J. Sánchez-Dehesa, “Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves,” Phys. Rev. Lett. 108(17), 174301 (2012).

[CrossRef]
[PubMed]

K. Sakoda, “Dirac cone in two- and three-dimensional metamaterials,” Opt. Express 20(4), 3898–3917 (2012).

[CrossRef]
[PubMed]

K. Sakoda, “Proof of the universality of mode symmetries in creating photonic Dirac cones,” Opt. Express 20(22), 25181–25194 (2012).

[CrossRef]
[PubMed]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B 86(3), 035141 (2012).

[CrossRef]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).

[CrossRef]
[PubMed]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(12), 123010 (2012).

[CrossRef]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).

[CrossRef]
[PubMed]

Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).

[CrossRef]
[PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).

[CrossRef]
[PubMed]

V. Yannopapas, “Photonic analog of a spin-polarized system with Rashba spin-orbit coupling,” Phys. Rev. B 83(11), 113101 (2011).

[CrossRef]

M. O. Goerbig, “Electronic properties of graphene in a strong magnetic field,” Rev. Mod. Phys. 83(4), 1193–1243 (2011).

[CrossRef]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).

[CrossRef]

V. C. Nguyen, L. Chen, and K. Halterman, “Total Transmission and Total Reflection by Zero Index Metamaterials with Defects,” Phys. Rev. Lett. 105(23), 233908 (2010).

[CrossRef]
[PubMed]

S. R. Zandbergen and M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104(4), 043903 (2010).

[CrossRef]
[PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).

[CrossRef]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).

[CrossRef]

V. Pardo and W. E. Pickett, “Half-Metallic Semi-Dirac-Point Generated by Quantum Confinement in TiO2/VO2 Nanostructures,” Phys. Rev. Lett. 102(16), 166803 (2009).

[CrossRef]
[PubMed]

S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, “Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point,” Phys. Rev. Lett. 103(1), 016402 (2009).

[CrossRef]
[PubMed]

G. Montambaux, F. Piéchon, J. N. Fuchs, and M. O. Goerbig, “Merging of Dirac points in a two-dimensional crystal,” Phys. Rev. B 80(15), 153412 (2009).

[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).

[CrossRef]
[PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).

[CrossRef]

X. Zhang, “Observing Zitterbewegung for Photons near the Dirac Point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100(11), 113903 (2008).

[CrossRef]
[PubMed]

X. Zhang and Z. Liu, “Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals,” Phys. Rev. Lett. 101(26), 264303 (2008).

[CrossRef]
[PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[CrossRef]
[PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).

[CrossRef]
[PubMed]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007).

[CrossRef]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).

[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[CrossRef]
[PubMed]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).

[CrossRef]

B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter 12(34), R435–R461 (2000).

[CrossRef]

P. R. Wallace, “The band theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).

[CrossRef]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).

[CrossRef]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[CrossRef]
[PubMed]

S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, “Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point,” Phys. Rev. Lett. 103(1), 016402 (2009).

[CrossRef]
[PubMed]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).

[CrossRef]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007).

[CrossRef]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007).

[CrossRef]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: A comparative study,” Phys. Rev. B 87(24), 245134 (2013).

[CrossRef]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).

[CrossRef]
[PubMed]

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(12), 123010 (2012).

[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).

[CrossRef]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B 86(3), 035141 (2012).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).

[CrossRef]
[PubMed]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).

[CrossRef]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

V. C. Nguyen, L. Chen, and K. Halterman, “Total Transmission and Total Reflection by Zero Index Metamaterials with Defects,” Phys. Rev. Lett. 105(23), 233908 (2010).

[CrossRef]
[PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).

[CrossRef]
[PubMed]

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(12), 123010 (2012).

[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).

[CrossRef]
[PubMed]

S. R. Zandbergen and M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104(4), 043903 (2010).

[CrossRef]
[PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).

[CrossRef]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[CrossRef]
[PubMed]

N. Engheta, “Materials Science. Pursuing Near-Zero Response,” Science 340(6130), 286–287 (2013).

[CrossRef]
[PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[CrossRef]
[PubMed]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).

[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[CrossRef]
[PubMed]

B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter 12(34), R435–R461 (2000).

[CrossRef]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: A comparative study,” Phys. Rev. B 87(24), 245134 (2013).

[CrossRef]

G. Montambaux, F. Piéchon, J. N. Fuchs, and M. O. Goerbig, “Merging of Dirac points in a two-dimensional crystal,” Phys. Rev. B 80(15), 153412 (2009).

[CrossRef]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).

[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).

[CrossRef]
[PubMed]

M. O. Goerbig, “Electronic properties of graphene in a strong magnetic field,” Rev. Mod. Phys. 83(4), 1193–1243 (2011).

[CrossRef]

G. Montambaux, F. Piéchon, J. N. Fuchs, and M. O. Goerbig, “Merging of Dirac points in a two-dimensional crystal,” Phys. Rev. B 80(15), 153412 (2009).

[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).

[CrossRef]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).

[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).

[CrossRef]
[PubMed]

V. C. Nguyen, L. Chen, and K. Halterman, “Total Transmission and Total Reflection by Zero Index Metamaterials with Defects,” Phys. Rev. Lett. 105(23), 233908 (2010).

[CrossRef]
[PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).

[CrossRef]
[PubMed]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).

[CrossRef]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).

[CrossRef]
[PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).

[CrossRef]
[PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).

[CrossRef]
[PubMed]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).

[CrossRef]
[PubMed]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).

[CrossRef]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).

[CrossRef]
[PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).

[CrossRef]
[PubMed]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).

[CrossRef]
[PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).

[CrossRef]
[PubMed]

Y. Wu and J. Li, “Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects,” Appl. Phys. Lett. 102(18), 183105 (2013).

[CrossRef]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).

[CrossRef]

X. Zhang and Z. Liu, “Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals,” Phys. Rev. Lett. 101(26), 264303 (2008).

[CrossRef]
[PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(12), 123010 (2012).

[CrossRef]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).

[CrossRef]

D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B 87(11), 115143 (2013).

[CrossRef]

Y. Li, Y. Wu, X. Chen, and J. Mei, “Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals,” Opt. Express 21(6), 7699–7711 (2013).

[CrossRef]
[PubMed]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B 86(3), 035141 (2012).

[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).

[CrossRef]
[PubMed]

G. Montambaux, F. Piéchon, J. N. Fuchs, and M. O. Goerbig, “Merging of Dirac points in a two-dimensional crystal,” Phys. Rev. B 80(15), 153412 (2009).

[CrossRef]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).

[CrossRef]
[PubMed]

V. C. Nguyen, L. Chen, and K. Halterman, “Total Transmission and Total Reflection by Zero Index Metamaterials with Defects,” Phys. Rev. Lett. 105(23), 233908 (2010).

[CrossRef]
[PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: A comparative study,” Phys. Rev. B 87(24), 245134 (2013).

[CrossRef]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).

[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).

[CrossRef]
[PubMed]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).

[CrossRef]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).

[CrossRef]

S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, “Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point,” Phys. Rev. Lett. 103(1), 016402 (2009).

[CrossRef]
[PubMed]

V. Pardo and W. E. Pickett, “Half-Metallic Semi-Dirac-Point Generated by Quantum Confinement in TiO2/VO2 Nanostructures,” Phys. Rev. Lett. 102(16), 166803 (2009).

[CrossRef]
[PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).

[CrossRef]

V. Pardo and W. E. Pickett, “Half-Metallic Semi-Dirac-Point Generated by Quantum Confinement in TiO2/VO2 Nanostructures,” Phys. Rev. Lett. 102(16), 166803 (2009).

[CrossRef]
[PubMed]

S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, “Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point,” Phys. Rev. Lett. 103(1), 016402 (2009).

[CrossRef]
[PubMed]

G. Montambaux, F. Piéchon, J. N. Fuchs, and M. O. Goerbig, “Merging of Dirac points in a two-dimensional crystal,” Phys. Rev. B 80(15), 153412 (2009).

[CrossRef]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).

[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).

[CrossRef]
[PubMed]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).

[CrossRef]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).

[CrossRef]

D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B 87(11), 115143 (2013).

[CrossRef]

D. Torrent and J. Sánchez-Dehesa, “Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves,” Phys. Rev. Lett. 108(17), 174301 (2012).

[CrossRef]
[PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007).

[CrossRef]

Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).

[CrossRef]
[PubMed]

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(12), 123010 (2012).

[CrossRef]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[CrossRef]
[PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[CrossRef]
[PubMed]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).

[CrossRef]

S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, “Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point,” Phys. Rev. Lett. 103(1), 016402 (2009).

[CrossRef]
[PubMed]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).

[CrossRef]
[PubMed]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).

[CrossRef]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B 87(11), 115143 (2013).

[CrossRef]

D. Torrent and J. Sánchez-Dehesa, “Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves,” Phys. Rev. Lett. 108(17), 174301 (2012).

[CrossRef]
[PubMed]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

P. R. Wallace, “The band theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).

[CrossRef]

Y. Li, Y. Wu, X. Chen, and J. Mei, “Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals,” Opt. Express 21(6), 7699–7711 (2013).

[CrossRef]
[PubMed]

Y. Wu and J. Li, “Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects,” Appl. Phys. Lett. 102(18), 183105 (2013).

[CrossRef]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B 86(3), 035141 (2012).

[CrossRef]

Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).

[CrossRef]
[PubMed]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).

[CrossRef]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).

[CrossRef]

V. Yannopapas, “Photonic analog of a spin-polarized system with Rashba spin-orbit coupling,” Phys. Rev. B 83(11), 113101 (2011).

[CrossRef]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[CrossRef]
[PubMed]

S. R. Zandbergen and M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104(4), 043903 (2010).

[CrossRef]
[PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

X. Zhang, “Observing Zitterbewegung for Photons near the Dirac Point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100(11), 113903 (2008).

[CrossRef]
[PubMed]

X. Zhang and Z. Liu, “Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals,” Phys. Rev. Lett. 101(26), 264303 (2008).

[CrossRef]
[PubMed]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B 86(3), 035141 (2012).

[CrossRef]

Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).

[CrossRef]
[PubMed]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).

[CrossRef]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).

[CrossRef]
[PubMed]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).

[CrossRef]

Y. Wu and J. Li, “Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects,” Appl. Phys. Lett. 102(18), 183105 (2013).

[CrossRef]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).

[CrossRef]

B. A. Foreman, “Theory of the effective Hamiltonian for degenerate bands in an electric field,” J. Phys. Condens. Matter 12(34), R435–R461 (2000).

[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).

[CrossRef]
[PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).

[CrossRef]
[PubMed]

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).

[CrossRef]
[PubMed]

Y. Lai, Y. Wu, P. Sheng, and Z.-Q. Zhang, “Hybrid elastic solids,” Nat. Mater. 10(8), 620–624 (2011).

[CrossRef]
[PubMed]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).

[CrossRef]
[PubMed]

H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14(12), 123010 (2012).

[CrossRef]

K. Sakoda, “Dirac cone in two- and three-dimensional metamaterials,” Opt. Express 20(4), 3898–3917 (2012).

[CrossRef]
[PubMed]

K. Sakoda, “Proof of the universality of mode symmetries in creating photonic Dirac cones,” Opt. Express 20(22), 25181–25194 (2012).

[CrossRef]
[PubMed]

Y. Li, Y. Wu, X. Chen, and J. Mei, “Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals,” Opt. Express 21(6), 7699–7711 (2013).

[CrossRef]
[PubMed]

P. R. Wallace, “The band theory of Graphite,” Phys. Rev. 71(9), 622–634 (1947).

[CrossRef]

S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78(3), 033834 (2008).

[CrossRef]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75(6), 063813 (2007).

[CrossRef]

J. Mei, Y. Wu, C. T. Chan, and Z.-Q. Zhang, “First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals,” Phys. Rev. B 86(3), 035141 (2012).

[CrossRef]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: A comparative study,” Phys. Rev. B 87(24), 245134 (2013).

[CrossRef]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80(15), 155103 (2009).

[CrossRef]

V. Yannopapas, “Photonic analog of a spin-polarized system with Rashba spin-orbit coupling,” Phys. Rev. B 83(11), 113101 (2011).

[CrossRef]

D. Torrent, D. Mayou, and J. Sánchez-Dehesa, “Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates,” Phys. Rev. B 87(11), 115143 (2013).

[CrossRef]

G. Montambaux, F. Piéchon, J. N. Fuchs, and M. O. Goerbig, “Merging of Dirac points in a two-dimensional crystal,” Phys. Rev. B 80(15), 153412 (2009).

[CrossRef]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).

[CrossRef]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).

[CrossRef]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).

[CrossRef]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[CrossRef]
[PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[CrossRef]
[PubMed]

V. C. Nguyen, L. Chen, and K. Halterman, “Total Transmission and Total Reflection by Zero Index Metamaterials with Defects,” Phys. Rev. Lett. 105(23), 233908 (2010).

[CrossRef]
[PubMed]

V. Pardo and W. E. Pickett, “Half-Metallic Semi-Dirac-Point Generated by Quantum Confinement in TiO2/VO2 Nanostructures,” Phys. Rev. Lett. 102(16), 166803 (2009).

[CrossRef]
[PubMed]

S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, “Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point,” Phys. Rev. Lett. 103(1), 016402 (2009).

[CrossRef]
[PubMed]

D. Torrent and J. Sánchez-Dehesa, “Acoustic Analogue of Graphene: Observation of Dirac Cones in Acoustic Surface Waves,” Phys. Rev. Lett. 108(17), 174301 (2012).

[CrossRef]
[PubMed]

S. R. Zandbergen and M. J. A. de Dood, “Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene,” Phys. Rev. Lett. 104(4), 043903 (2010).

[CrossRef]
[PubMed]

X. Zhang, “Observing Zitterbewegung for Photons near the Dirac Point of a Two-Dimensional Photonic Crystal,” Phys. Rev. Lett. 100(11), 113903 (2008).

[CrossRef]
[PubMed]

X. Zhang and Z. Liu, “Extremal Transmission and Beating Effect of Acoustic Waves in Two-Dimensional Sonic Crystals,” Phys. Rev. Lett. 101(26), 264303 (2008).

[CrossRef]
[PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).

[CrossRef]
[PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).

[CrossRef]
[PubMed]

J. Bravo-Abad, J. D. Joannopoulos, and M. Soljačić, “Enabling single-mode behavior over large areas with photonic Dirac cones,” Proc. Natl. Acad. Sci. U.S.A. 109(25), 9761–9765 (2012).

[CrossRef]
[PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).

[CrossRef]

M. O. Goerbig, “Electronic properties of graphene in a strong magnetic field,” Rev. Mod. Phys. 83(4), 1193–1243 (2011).

[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).

[CrossRef]
[PubMed]

N. Engheta, “Materials Science. Pursuing Near-Zero Response,” Science 340(6130), 286–287 (2013).

[CrossRef]
[PubMed]