Abstract

An achromatic six-region phase mask coronagraph, used for the detection of exoplanets, is proposed. The mask has six regions in angular direction and could work in wideband. Furthermore, a six-level phase mask, as an example of the six-region phase mask, is theoretically investigated. According to numerical simulations, this specific mask has a deep elimination of starlight, good performance of achromatism and small inner working angle. As a single phase mask, the ratio of the remaining starlight of the six-level phase mask to the total incident starlight is less than 0.001 when the wavelength is between 500 nm and 600 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, N. O’Brien, “Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17(3), 1902–1918 (2009).
    [CrossRef] [PubMed]
  2. J. T. Trauger, W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
    [CrossRef] [PubMed]
  3. E. Serabyn, D. Mawet, R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
    [CrossRef] [PubMed]
  4. D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
    [CrossRef]
  5. G. A. Swartzlander, E. L. Ford, R. S. Abdul-Malik, L. M. Close, M. A. Peters, D. M. Palacios, D. W. Wilson, “Astronomical demonstration of an optical vortex coronagraph,” Opt. Express 16(14), 10200–10207 (2008).
    [CrossRef] [PubMed]
  6. M. P. Cagigal, V. F. Canales, P. J. Valle, J. E. Oti, “Coronagraphic mask design using Hermite functions,” Opt. Express 17(22), 20515–20520 (2009).
    [CrossRef] [PubMed]
  7. E. Serabyna and D. Mawet, “Phase mask coronagraphy at JPL and Palomar,” EPJ Web of Conferences 16, 03004 (2011).
    [CrossRef]
  8. P. Baudoz, Y. Rabbia, J. Gay, “Achromatic interfero coronagraph,” Astron. Astrophys. Suppl. Ser. 141(2), 319–329 (2000).
    [CrossRef]
  9. N. Baba, N. Murakami, T. Ishigaki, N. Hashimoto, “Polarization interferometric stellar coronagraph,” Opt. Lett. 27(16), 1373–1375 (2002).
    [CrossRef] [PubMed]
  10. O. Guyon, M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118(844), 860–865 (2006).
    [CrossRef]
  11. O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys. 404(1), 379–387 (2003).
    [CrossRef]
  12. O. Guyon, P. M. Hinz, E. Cady, R. Belikov, and F. Martinache, “High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures,” 2014 sprint arXiv:1305.6686, accepted to ApJ.
  13. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, and J. K. Wallace, “Ring-Apodized Vortex coronagraphs for obscured telescopes. I. Transmissive ring apodizers,” 2013 sprint arXiv:1309.3328, accepted to ApJS.
  14. O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
    [CrossRef]
  15. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
    [CrossRef]
  16. L. Abe, F. Vakili, A. Boccaletti, “The achromatic phase knife coronagraph,” Astron. Astrophys. 374(3), 1161–1168 (2001).
    [CrossRef]
  17. D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
    [CrossRef]
  18. G. Foo, D. M. Palacios, G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
    [CrossRef] [PubMed]
  19. J. H. Lee, G. Foo, E. G. Johnson, G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
    [CrossRef] [PubMed]
  20. G. A. Swartzlander., “The optical vortex coronagraph,” J. Opt. A, Pure Appl. Opt. 11(9), 094022 (2009).
    [CrossRef]
  21. N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
    [CrossRef]
  22. N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
    [CrossRef]
  23. G. A. Swartzlander., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006).
    [CrossRef] [PubMed]
  24. C. C. Shih and P. V. Estates, “Phase mask with continuous azimuthal variation for a coronagraph imaging system,” U.S. Patent 7,773,307 (2010).
  25. D. Mawet, P. Riaud, O. Absil, J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
    [CrossRef]
  26. A. Niv, G. Biener, V. Kleiner, E. Hasman, “Polychromatic vectorial vortex formed by geometric phase elements,” Opt. Lett. 32(7), 847–849 (2007).
    [CrossRef] [PubMed]
  27. N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21(6), 7400–7410 (2013).
    [CrossRef] [PubMed]
  28. D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
    [CrossRef]
  29. O. Ma, Q. Cao, F. Hou, “Wide-band coronagraph with sinusoidal phase in the angular direction,” Opt. Express 20(10), 10933–10943 (2012).
    [CrossRef] [PubMed]
  30. Q. Cao, M. Gruber, J. Jahns, “Generalized confocal imaging systems for free-space optical interconnections,” Appl. Opt. 43(16), 3306–3309 (2004).
    [CrossRef] [PubMed]
  31. J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature 368(6468), 203–207 (1994).
    [CrossRef]
  32. C. Marois, J. Veran, C. Correia, “A Fresnel propagation analysis of NFIRAOS/IRIS high-contrast exoplanet imaging capabilities,” Proc. SPIE 8447, 844726 (2012).
    [CrossRef]
  33. D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
    [CrossRef]
  34. R. Galicher, P. Baudoz, J. Baudrand, “Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes,” Astron. Astrophys. 530, A43 (2011).
    [CrossRef]
  35. J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
    [CrossRef]
  36. D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
    [CrossRef]
  37. A. Carlotti, G. Ricort, C. Aime, “Phase mask coronagraphy using a Mach-Zehnder interferometer,” Astron. Astrophys. 504(2), 663–671 (2009).
    [CrossRef]

2013 (2)

N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21(6), 7400–7410 (2013).
[CrossRef] [PubMed]

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

2012 (2)

O. Ma, Q. Cao, F. Hou, “Wide-band coronagraph with sinusoidal phase in the angular direction,” Opt. Express 20(10), 10933–10943 (2012).
[CrossRef] [PubMed]

C. Marois, J. Veran, C. Correia, “A Fresnel propagation analysis of NFIRAOS/IRIS high-contrast exoplanet imaging capabilities,” Proc. SPIE 8447, 844726 (2012).
[CrossRef]

2011 (3)

R. Galicher, P. Baudoz, J. Baudrand, “Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes,” Astron. Astrophys. 530, A43 (2011).
[CrossRef]

J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
[CrossRef]

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

2010 (3)

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

E. Serabyn, D. Mawet, R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[CrossRef] [PubMed]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

2009 (4)

2008 (2)

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

G. A. Swartzlander, E. L. Ford, R. S. Abdul-Malik, L. M. Close, M. A. Peters, D. M. Palacios, D. W. Wilson, “Astronomical demonstration of an optical vortex coronagraph,” Opt. Express 16(14), 10200–10207 (2008).
[CrossRef] [PubMed]

2007 (3)

J. T. Trauger, W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[CrossRef] [PubMed]

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

A. Niv, G. Biener, V. Kleiner, E. Hasman, “Polychromatic vectorial vortex formed by geometric phase elements,” Opt. Lett. 32(7), 847–849 (2007).
[CrossRef] [PubMed]

2006 (5)

J. H. Lee, G. Foo, E. G. Johnson, G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

G. A. Swartzlander., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006).
[CrossRef] [PubMed]

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
[CrossRef]

O. Guyon, M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118(844), 860–865 (2006).
[CrossRef]

2005 (2)

G. Foo, D. M. Palacios, G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
[CrossRef] [PubMed]

D. Mawet, P. Riaud, O. Absil, J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

2004 (1)

2003 (1)

O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys. 404(1), 379–387 (2003).
[CrossRef]

2002 (1)

2001 (1)

L. Abe, F. Vakili, A. Boccaletti, “The achromatic phase knife coronagraph,” Astron. Astrophys. 374(3), 1161–1168 (2001).
[CrossRef]

2000 (2)

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[CrossRef]

P. Baudoz, Y. Rabbia, J. Gay, “Achromatic interfero coronagraph,” Astron. Astrophys. Suppl. Ser. 141(2), 319–329 (2000).
[CrossRef]

1994 (1)

J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature 368(6468), 203–207 (1994).
[CrossRef]

Abdul-Malik, R. S.

Abe, L.

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

L. Abe, F. Vakili, A. Boccaletti, “The achromatic phase knife coronagraph,” Astron. Astrophys. 374(3), 1161–1168 (2001).
[CrossRef]

Absil, O.

D. Mawet, P. Riaud, O. Absil, J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

Aime, C.

A. Carlotti, G. Ricort, C. Aime, “Phase mask coronagraphy using a Mach-Zehnder interferometer,” Astron. Astrophys. 504(2), 663–671 (2009).
[CrossRef]

Angel, J. R. P.

J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature 368(6468), 203–207 (1994).
[CrossRef]

Baba, N.

N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21(6), 7400–7410 (2013).
[CrossRef] [PubMed]

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

N. Baba, N. Murakami, T. Ishigaki, N. Hashimoto, “Polarization interferometric stellar coronagraph,” Opt. Lett. 27(16), 1373–1375 (2002).
[CrossRef] [PubMed]

Baudoz, P.

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

R. Galicher, P. Baudoz, J. Baudrand, “Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes,” Astron. Astrophys. 530, A43 (2011).
[CrossRef]

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

P. Baudoz, Y. Rabbia, J. Gay, “Achromatic interfero coronagraph,” Astron. Astrophys. Suppl. Ser. 141(2), 319–329 (2000).
[CrossRef]

Baudrand, J.

R. Galicher, P. Baudoz, J. Baudrand, “Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes,” Astron. Astrophys. 530, A43 (2011).
[CrossRef]

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

Biener, G.

Boccaletti, A.

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

L. Abe, F. Vakili, A. Boccaletti, “The achromatic phase knife coronagraph,” Astron. Astrophys. 374(3), 1161–1168 (2001).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[CrossRef]

Burruss, R.

E. Serabyn, D. Mawet, R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[CrossRef] [PubMed]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

Cagigal, M. P.

Canales, V. F.

Cao, Q.

Carlotti, A.

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

A. Carlotti, G. Ricort, C. Aime, “Phase mask coronagraphy using a Mach-Zehnder interferometer,” Astron. Astrophys. 504(2), 663–671 (2009).
[CrossRef]

Chipman, R.

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

Clénet, Y.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[CrossRef]

Close, L. M.

Collins, B.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
[CrossRef]

Correia, C.

C. Marois, J. Veran, C. Correia, “A Fresnel propagation analysis of NFIRAOS/IRIS high-contrast exoplanet imaging capabilities,” Proc. SPIE 8447, 844726 (2012).
[CrossRef]

Dupuis, O.

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

Foo, G.

J. H. Lee, G. Foo, E. G. Johnson, G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

G. Foo, D. M. Palacios, G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
[CrossRef] [PubMed]

Ford, E. L.

Fukumoto, R.

Galicher, R.

R. Galicher, P. Baudoz, J. Baudrand, “Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes,” Astron. Astrophys. 530, A43 (2011).
[CrossRef]

Gay, J.

P. Baudoz, Y. Rabbia, J. Gay, “Achromatic interfero coronagraph,” Astron. Astrophys. Suppl. Ser. 141(2), 319–329 (2000).
[CrossRef]

Gordon, B.

J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
[CrossRef]

Gruber, M.

Guyon, O.

O. Guyon, M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118(844), 860–865 (2006).
[CrossRef]

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
[CrossRef]

O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys. 404(1), 379–387 (2003).
[CrossRef]

Hamaguchi, S.

Hanot, Ch.

Hashimoto, N.

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

N. Baba, N. Murakami, T. Ishigaki, N. Hashimoto, “Polarization interferometric stellar coronagraph,” Opt. Lett. 27(16), 1373–1375 (2002).
[CrossRef] [PubMed]

Hasman, E.

Hickey, J.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

Hou, F.

Ise, A.

Ishigaki, T.

Jahns, J.

Johnson, E. G.

J. H. Lee, G. Foo, E. G. Johnson, G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

Kern, B.

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

Kleiner, V.

Krist, J.

J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
[CrossRef]

Kuchner, M. J.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
[CrossRef]

Kuhnert, A.

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

Labeyrie, A.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[CrossRef]

Lee, J. H.

J. H. Lee, G. Foo, E. G. Johnson, G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

Liewer, K.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, N. O’Brien, “Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17(3), 1902–1918 (2009).
[CrossRef] [PubMed]

Ma, O.

Marois, C.

C. Marois, J. Veran, C. Correia, “A Fresnel propagation analysis of NFIRAOS/IRIS high-contrast exoplanet imaging capabilities,” Proc. SPIE 8447, 844726 (2012).
[CrossRef]

Mawet, D.

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
[CrossRef]

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

E. Serabyn, D. Mawet, R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[CrossRef] [PubMed]

D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, N. O’Brien, “Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17(3), 1902–1918 (2009).
[CrossRef] [PubMed]

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

D. Mawet, P. Riaud, O. Absil, J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

McClain, S.

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

McEldowney, S.

Mennesson, B.

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

Moody, D.

J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
[CrossRef]

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

Murakami, N.

N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21(6), 7400–7410 (2013).
[CrossRef] [PubMed]

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

N. Baba, N. Murakami, T. Ishigaki, N. Hashimoto, “Polarization interferometric stellar coronagraph,” Opt. Lett. 27(16), 1373–1375 (2002).
[CrossRef] [PubMed]

Niessner, A.

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

Nishikawa, J.

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

Niv, A.

O’Brien, N.

Oka, K.

Oti, J. E.

Palacios, D. M.

Peters, M. A.

Pluzhnik, E. A.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
[CrossRef]

Pueyo, L.

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

Rabbia, Y.

P. Baudoz, Y. Rabbia, J. Gay, “Achromatic interfero coronagraph,” Astron. Astrophys. Suppl. Ser. 141(2), 319–329 (2000).
[CrossRef]

Riaud, P.

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

D. Mawet, P. Riaud, O. Absil, J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[CrossRef]

Ricort, G.

A. Carlotti, G. Ricort, C. Aime, “Phase mask coronagraphy using a Mach-Zehnder interferometer,” Astron. Astrophys. 504(2), 663–671 (2009).
[CrossRef]

Ridgway, S. T.

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
[CrossRef]

Rouan, D.

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[CrossRef]

Sakamoto, M.

Serabyn, E.

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

E. Serabyn, D. Mawet, R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[CrossRef] [PubMed]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, N. O’Brien, “Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17(3), 1902–1918 (2009).
[CrossRef] [PubMed]

Shao, M.

O. Guyon, M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118(844), 860–865 (2006).
[CrossRef]

Shemo, D.

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, Ch. Hanot, S. McEldowney, D. Shemo, N. O’Brien, “Optical Vectorial Vortex Coronagraphs using Liquid Crystal Polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17(3), 1902–1918 (2009).
[CrossRef] [PubMed]

Surdej, J.

D. Mawet, P. Riaud, O. Absil, J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

Swartzlander, G. A.

Tamura, M.

N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21(6), 7400–7410 (2013).
[CrossRef] [PubMed]

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

Traub, W. A.

J. T. Trauger, W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[CrossRef] [PubMed]

Trauger, J.

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
[CrossRef]

Trauger, J. T.

J. T. Trauger, W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[CrossRef] [PubMed]

Uemura, R.

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

Vakili, F.

L. Abe, F. Vakili, A. Boccaletti, “The achromatic phase knife coronagraph,” Astron. Astrophys. 374(3), 1161–1168 (2001).
[CrossRef]

Valle, P. J.

Veran, J.

C. Marois, J. Veran, C. Correia, “A Fresnel propagation analysis of NFIRAOS/IRIS high-contrast exoplanet imaging capabilities,” Proc. SPIE 8447, 844726 (2012).
[CrossRef]

Wallace, J.

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

Wilson, D. W.

Yokochi, K.

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

Appl. Opt. (1)

Astron. Astrophys. (5)

D. Mawet, P. Riaud, J. Baudrand, P. Baudoz, A. Boccaletti, O. Dupuis, D. Rouan, “The four-quadrant phase-mask coronagraph: white lightlaboratory results with an achromatic device,” Astron. Astrophys. 448(2), 801–808 (2006).
[CrossRef]

R. Galicher, P. Baudoz, J. Baudrand, “Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes,” Astron. Astrophys. 530, A43 (2011).
[CrossRef]

O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys. 404(1), 379–387 (2003).
[CrossRef]

L. Abe, F. Vakili, A. Boccaletti, “The achromatic phase knife coronagraph,” Astron. Astrophys. 374(3), 1161–1168 (2001).
[CrossRef]

A. Carlotti, G. Ricort, C. Aime, “Phase mask coronagraphy using a Mach-Zehnder interferometer,” Astron. Astrophys. 504(2), 663–671 (2009).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

P. Baudoz, Y. Rabbia, J. Gay, “Achromatic interfero coronagraph,” Astron. Astrophys. Suppl. Ser. 141(2), 319–329 (2000).
[CrossRef]

Astrophys. J. (4)

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar observatory,” Astrophys. J. 709(1), 53–57 (2010).
[CrossRef]

O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. 167(1Suppl.), 81–99 (2006).
[CrossRef]

N. Murakami, J. Nishikawa, K. Yokochi, M. Tamura, N. Baba, L. Abe, “Achromatic eight-octant phase mask coronagraph using photonic crystal,” Astrophys. J. 714(1), 772–777 (2010).
[CrossRef]

D. Mawet, P. Riaud, O. Absil, J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633(2), 1191–1200 (2005).
[CrossRef]

C. R. Phys. (1)

D. Rouan, J. Baudrand, A. Boccaletti, P. Baudoz, D. Mawet, P. Riaud, “The four quadrant phase mask coronagraph and its avatars,” C. R. Phys. 8(3-4), 298–311 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. A. Swartzlander., “The optical vortex coronagraph,” J. Opt. A, Pure Appl. Opt. 11(9), 094022 (2009).
[CrossRef]

Nature (3)

J. R. P. Angel, “Ground-based imaging of extrasolar planets using adaptive optics,” Nature 368(6468), 203–207 (1994).
[CrossRef]

J. T. Trauger, W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446(7137), 771–773 (2007).
[CrossRef] [PubMed]

E. Serabyn, D. Mawet, R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464(7291), 1018–1020 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. H. Lee, G. Foo, E. G. Johnson, G. A. Swartzlander., “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97(5), 053901 (2006).
[CrossRef] [PubMed]

Proc. SPIE (4)

D. Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, J. Wallace, P. Baudoz, “The multistage and ring-apodized vortex coronagraph: two simple, small-angle coronagraphic solutions for heavily obscured apertures,” Proc. SPIE 8864, 886411 (2013).
[CrossRef]

C. Marois, J. Veran, C. Correia, “A Fresnel propagation analysis of NFIRAOS/IRIS high-contrast exoplanet imaging capabilities,” Proc. SPIE 8447, 844726 (2012).
[CrossRef]

J. Trauger, D. Moody, B. Gordon, J. Krist, D. Mawet, “A hybrid Lyot coronagraph for the direct imaging and spectroscopy of exoplanet systems: recent results and prospects,” Proc. SPIE 8151, 81510G (2011).
[CrossRef]

D. Mawet, E. Serabyn, D. Moody, B. Kern, A. Niessner, A. Kuhnert, D. Shemo, R. Chipman, S. McClain, J. Trauger, “Recent results of the second generation of vector vortex coronagraphs on the high-contrast imaging testbed at JPL,” Proc. SPIE 8151, 81511D (2011).
[CrossRef]

Publ. Astron. Soc. Pac. (3)

N. Murakami, R. Uemura, N. Baba, J. Nishikawa, M. Tamura, N. Hashimoto, L. Abe, “An eight-octant phase mask coronagraph,” Publ. Astron. Soc. Pac. 120(872), 1112–1118 (2008).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, A. Labeyrie, “The four-quadrant phase-mask coronagraph,” Publ. Astron. Soc. Pac. 112(777), 1479–1486 (2000).
[CrossRef]

O. Guyon, M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118(844), 860–865 (2006).
[CrossRef]

Other (4)

E. Serabyna and D. Mawet, “Phase mask coronagraphy at JPL and Palomar,” EPJ Web of Conferences 16, 03004 (2011).
[CrossRef]

O. Guyon, P. M. Hinz, E. Cady, R. Belikov, and F. Martinache, “High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures,” 2014 sprint arXiv:1305.6686, accepted to ApJ.

Mawet, L. Pueyo, A. Carlotti, B. Mennesson, E. Serabyn, and J. K. Wallace, “Ring-Apodized Vortex coronagraphs for obscured telescopes. I. Transmissive ring apodizers,” 2013 sprint arXiv:1309.3328, accepted to ApJS.

C. C. Shih and P. V. Estates, “Phase mask with continuous azimuthal variation for a coronagraph imaging system,” U.S. Patent 7,773,307 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The set-up of the coronagraph system, which is composed of three imaging lenses (L1, L2, L3), an aperture stop (AS), a Lyot stop (LS), a phase mask, and a detecting receiver like a CCD camera, with all lenses having the same focal length f .

Fig. 2
Fig. 2

The phase function in the angular direction. The function G( θ ) is a double periodic function in the range of 0<θ2π , and f( θ ) is an arbitrary function with θ ranging from 0 to B .

Fig. 3
Fig. 3

(a) Surface profile of the SLPM composed of six level regions. Different color represents different region. (b) The corresponding phase distribution in the angular direction for the designed wavelength λ 0 . Note that the function G( θ ) is a double periodic function in the range of 0<θ2π .

Fig. 4
Fig. 4

The acquired Lyot-stop image of | U( x,y ) | 2 . The simulation is under ideal condition. The color represents relative starlight intensity. The radius of the “dark” circular region in the middle is 1.

Fig. 5
Fig. 5

Numerical result of the throughput of the planet light in the range of 2π of different angular separation (λ/d). The y-axis (throughput) is the ratio of the planet light within the LS and the total amount of planet light, while the x-axis is the angular coordinate of the SLPM surface (rad).

Fig. 6
Fig. 6

Comparison between the peak throughput of SLPM (FQPM) (green curve), SPM (red curve), and VPM2 (blue curve), for R LS = R AS . It is pointed out that d is the diameter of aperture stop, where d=2 R AS .

Fig. 7
Fig. 7

Comparison between the value | C 0 (λ) | 2 of the SPM (red curve), the SLPM (blue curve), and the single FQPM (black curve) for designed wavelength λ 0 =550 nm .

Fig. 8
Fig. 8

The value | C 0 (λ) | 2 of the SLPM with different central wavelength. λ 0 =450 nm (blue curve), λ 0 =550 nm (red curve) and λ 0 =650 nm (black curve).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

circ(r/ R AS )={ 1 r R AS 0 r> R AS ,
t(θ,λ)=exp[ i( λ 0 /λ)G( θ ) ],
U(x'',y'')=A n= (i) n C n (λ) H n { J 1 (ar') ar' } e inϕ ,
C n (λ)= 1 2π 0 2π t(θ,λ) e inθ dθ = 1 2π 0 2π e i( λ 0 /λ)G(θ) e inθ dθ .
n= | C n | 2 =1.
H n { J 1 (ar') ar' }={ f n (r'') r'' R AS 0 r''< R AS ,
U( x",y" )=A q= ( i ) 2q+1 C 2q+1 H 2q+1 { J 1 ( ar' ) ar' } e i( 2q+1 )ϕ +A C 0 H 0 { J 1 ( ar' ) ar' },
U( x",y" )=A C 0 H 0 { J 1 ( ar' ) ar' }.
C 0 (λ)= 1 2π 0 2π cos[ ( λ 0 /λ)G( θ ) ] dθ+i 1 2π 0 2π sin[ ( λ 0 /λ)G( θ ) ] dθ.
G(θ)={ f(θ) 0θ<B f(θB) Bθ<2B 0 2Bθ<π f(θπ) πθ<π+B f(θπB) π+Bθ<π+2B 0 π+2Bθ<2π .
C 0 (λ)= 1 π [ 0 B e i λ 0 λ f(θ) dθ + B 2B e i λ 0 λ f(θB) dθ+ 2B π dθ ] = 1 π [ 0 B e i λ 0 λ f(θ) dθ + 0 B e i λ 0 λ f(θ) dθ+ π2B ]= 1 π 0 B 2cos[ λ 0 λ f(θ) ]dθ +1 2B π .
C 0 (λ) λ = 1 π 0 B f(θ) 2 λ 0 λ 2 sin[ λ 0 λ f(θ) ]dθ .
{ 0 B cos[f(θ)]dθ =B π 2 0 B f(θ)sin[f(θ)]dθ=0 .
t(θ,λ)={ e i λ 0 λ π 0θ< π 4 ,πθ< 5π 4 1 π 2 θ<π, 3π 2 θ<2π e i λ 0 λ π π 4 θ< π 2 , 5π 4 θ< 3π 2 .
C 0 (λ)| SLPM = cos 2 ( λ 0 2λ π ).
{ | C 0 (λ) | SLPM 2 = [ cos 2 ( λ 0 2λ π ) ] 2 | C 0 (λ) | SPM 2 = [ 2 b J 0 ( λ 0 λ h )+1 2 b ] 2 | C 0 (λ) | FQPM 2 = [ cos( λ 0 2λ π ) ] 2 .
H 2m { J 1 (r') r' }= f n (r'') = 0 J 2m (r''r') J 1 (r')dr ' = Γ(m+1) r' ' 2 Γ(2)Γ(m) × F 2 1 (1+m,1m;2; 1 r' ' 2 ), r''1
H 2m { J 1 (r') r' }= m r' ' 2 n=0 m1 (1+m) n (1m) n 2 n n! 1 r' ' 2n ,
(x) n =x(x+1)(x+2)(x+n-1).
H 2m { J 1 (r') r' }= m r' ' 2 n=0 m1 Γ(m+n+1) Γ(1+m) (1) n Γ(m) Γ(mn) Γ(n+2)Γ(n+1) 1 r' ' 2n = m r' ' 2 n=0 m1 (1) n Γ(m+n+1)Γ(m) Γ(1+m)Γ(mn)Γ(n+2)Γ(n+1) 1 r' ' 2n = m r' ' 2 n=0 m1 (1) n (m+n)!(m1)! m!n!(mn1)!(n+1)! 1 r' ' 2n ,
H 2 { J 1 (r') r' }= 1 r' ' 2 H 4 { J 1 (r') r' }= 2 r' ' 2 + 3 r' ' 4 H 6 { J 1 (r') r' }= 3 r' ' 2 12 r' ' 4 + 10 r' ' 6 .

Metrics