Abstract

Fiber reflectance spectroscopy is a non-invasive method for diagnosing skin diseases or evaluating aesthetic efficacy, but it is dependent on the inverse model validity. In this work, a lookup-table-based inverse model is developed using two-layered Monte Carlo simulations in order to extract the physiological and optical properties of skin. The melanin volume fraction and blood oxygen parameters are extracted from fiber reflectance spectra of in vivo human skin. The former indicates good coincidence with a commercial skin-melanin probe, and the latter (based on forearm venous occlusion and ischemia, and hot compress experiment) shows that the measurements are in agreement with physiological changes. These results verify the potential of this spectroscopy technique for evaluating the physiological characteristics of human skin.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008).
    [CrossRef] [PubMed]
  2. J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
    [CrossRef] [PubMed]
  3. G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011).
    [CrossRef] [PubMed]
  4. R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
    [CrossRef] [PubMed]
  5. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
    [CrossRef] [PubMed]
  6. Th. Forster, U. Issberner, H. Hensen, “Lipid/surfactant compounds as a new tool to optimize skin-care properties of personal-cleansing products,” J. Surfactants Deterg. 3(3), 345–352 (2000).
    [CrossRef]
  7. L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006).
    [CrossRef] [PubMed]
  8. Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000).
    [CrossRef] [PubMed]
  9. R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
    [CrossRef] [PubMed]
  10. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
    [CrossRef] [PubMed]
  11. A. N. Bashkatov, E. A. Genina, V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
    [CrossRef]
  12. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [CrossRef] [PubMed]
  13. G. Zonios, A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14(19), 8661–8674 (2006).
    [CrossRef] [PubMed]
  14. G. Zonios, A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267 (2009).
    [CrossRef] [PubMed]
  15. N. Rajaram, T. H. Nguyen, J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [CrossRef] [PubMed]
  16. N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
    [CrossRef] [PubMed]
  17. S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
    [CrossRef] [PubMed]
  18. G. M. Palmer, N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  19. M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express 15(12), 7863–7875 (2007).
    [CrossRef] [PubMed]
  20. G. Zonios, J. Bykowski, N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
    [CrossRef] [PubMed]
  21. J. C. Finlay, T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004).
    [CrossRef] [PubMed]
  22. G. Zonios, A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2(12), 3284–3294 (2011).
    [CrossRef] [PubMed]
  23. L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
    [CrossRef] [PubMed]
  24. Z. Qian, S. S. Victor, Y. Gu, C. A. Giller, H. Liu, “Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study,” Opt. Express 11(16), 1844–1855 (2003).
    [CrossRef] [PubMed]
  25. D. Zhu, W. Lu, S. Zeng, Q. Luo, “Effect of light losses of sample between two integrating spheres on optical properties estimation,” J. Biomed. Opt. 12(6), 064004 (2007).
    [CrossRef] [PubMed]
  26. G. Mantis, G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48(18), 3490–3496 (2009).
    [CrossRef] [PubMed]
  27. G. Zonios, A. Dimou, “Simple two-layer reflectance model for biological tissue applications: lower absorbing layer,” Appl. Opt. 49(27), 5026–5031 (2010).
    [CrossRef] [PubMed]
  28. D. Yudovsky, L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
    [CrossRef] [PubMed]
  29. I. Fredriksson, M. Larsson, T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
    [CrossRef] [PubMed]
  30. C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012).
    [CrossRef]
  31. C. Zhu, Q. Liu, “Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study,” Opt. Express 19(18), 17799–17812 (2011).
    [CrossRef] [PubMed]
  32. B. Luo, S. He, “An improved Monte Carlo diffusion hybrid model for light reflectance by turbid media,” Opt. Express 15(10), 5905–5918 (2007).
    [CrossRef] [PubMed]
  33. L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
    [CrossRef]
  34. L. Wang, S. L. Jacques, L. Zheng, “CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54(3), 141–150 (1997).
    [CrossRef]
  35. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
    [CrossRef] [PubMed]
  36. S. L. Jacques, “Skin Optics,” (1998), http://omlc.ogi.edu/news/jan98/skinoptics.html .
  37. S. A. Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  38. R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
    [CrossRef] [PubMed]
  39. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [CrossRef] [PubMed]
  40. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  41. F. Martelli, G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15(2), 486–500 (2007).
    [CrossRef] [PubMed]
  42. S. L. Jacques, “Spectral Imaging and Analysis to Yield Tissue Optical Properties,” J. Innov. Opt. Health Sci. 2(02), 123–129 (2009).
    [CrossRef]
  43. P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000).
    [CrossRef] [PubMed]
  44. J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
    [CrossRef] [PubMed]
  45. Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
    [CrossRef] [PubMed]
  46. T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
    [CrossRef]
  47. Courage & Khazaka, “Information and operating instructions for the Cutometer MPA 580 and its probe,” Koln, Germany: CK electronic GmbH (2005).
  48. R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997).
    [CrossRef] [PubMed]

2012 (2)

I. Fredriksson, M. Larsson, T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[CrossRef] [PubMed]

C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012).
[CrossRef]

2011 (8)

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[CrossRef]

S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[CrossRef] [PubMed]

L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[CrossRef] [PubMed]

C. Zhu, Q. Liu, “Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study,” Opt. Express 19(18), 17799–17812 (2011).
[CrossRef] [PubMed]

G. Zonios, A. Dimou, “Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study,” Biomed. Opt. Express 2(12), 3284–3294 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (3)

2008 (2)

N. Rajaram, T. H. Nguyen, J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[CrossRef] [PubMed]

I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (5)

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[CrossRef] [PubMed]

G. M. Palmer, N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

G. Zonios, A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14(19), 8661–8674 (2006).
[CrossRef] [PubMed]

2005 (1)

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

2004 (1)

J. C. Finlay, T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

G. Zonios, J. Bykowski, N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[CrossRef] [PubMed]

2000 (3)

Th. Forster, U. Issberner, H. Hensen, “Lipid/surfactant compounds as a new tool to optimize skin-care properties of personal-cleansing products,” J. Surfactants Deterg. 3(3), 345–352 (2000).
[CrossRef]

Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000).
[CrossRef] [PubMed]

P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000).
[CrossRef] [PubMed]

1999 (1)

1997 (2)

R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, L. Zheng, “CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54(3), 141–150 (1997).
[CrossRef]

1995 (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

1992 (1)

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

1981 (1)

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

Aizu, Y.

T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[CrossRef]

Alewaeters, K.

P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000).
[CrossRef] [PubMed]

Almenrader, N.

R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997).
[CrossRef] [PubMed]

Altmeyer, P.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[CrossRef] [PubMed]

Anderson, C.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

Arakawa, N.

T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[CrossRef]

Aramil, T. J.

Aurisicchio, P.

R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997).
[CrossRef] [PubMed]

Backman, V.

Barel, A. O.

P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000).
[CrossRef] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[CrossRef]

Bish, S. F.

S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[CrossRef] [PubMed]

Bodén, I.

I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008).
[CrossRef] [PubMed]

Brambilla, M.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Bykowski, J.

G. Zonios, J. Bykowski, N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[CrossRef] [PubMed]

Cascinelli, N.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Chen, H.-D.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Chen, J.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Chen, J. Z. S.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Choi, S. Y.

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

Clarys, P.

P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000).
[CrossRef] [PubMed]

Clay, C. D.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

Clemente, C.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

De Blasi, R. A.

R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997).
[CrossRef] [PubMed]

Dimou, A.

Dong, G.-H.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Feld, M. S.

Ferrari, M.

R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997).
[CrossRef] [PubMed]

Finlay, J. C.

J. C. Finlay, T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

Fitzmaurice, M.

Forster, Th.

Th. Forster, U. Issberner, H. Hensen, “Lipid/surfactant compounds as a new tool to optimize skin-care properties of personal-cleansing products,” J. Surfactants Deterg. 3(3), 345–352 (2000).
[CrossRef]

Foster, T. H.

J. C. Finlay, T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

Fredriksson, I.

I. Fredriksson, M. Larsson, T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[CrossRef] [PubMed]

Gao, X.-H.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Gendron-Fitzpatrick, A.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[CrossRef]

Giller, C. A.

Gu, Y.

He, H.

C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012).
[CrossRef]

He, S.

Heenan, P. J.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

Henricson, J.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[CrossRef] [PubMed]

Hensen, H.

Th. Forster, U. Issberner, H. Hensen, “Lipid/surfactant compounds as a new tool to optimize skin-care properties of personal-cleansing products,” J. Surfactants Deterg. 3(3), 345–352 (2000).
[CrossRef]

Hoffmann, K.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Huh, C. H.

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

Issberner, U.

Th. Forster, U. Issberner, H. Hensen, “Lipid/surfactant compounds as a new tool to optimize skin-care properties of personal-cleansing products,” J. Surfactants Deterg. 3(3), 345–352 (2000).
[CrossRef]

Jacques, S. L.

S. L. Jacques, “Spectral Imaging and Analysis to Yield Tissue Optical Properties,” J. Innov. Opt. Health Sci. 2(02), 123–129 (2009).
[CrossRef]

L. Wang, S. L. Jacques, L. Zheng, “CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54(3), 141–150 (1997).
[CrossRef]

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Jiang, C.

C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012).
[CrossRef]

Kazmi, P.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006).
[CrossRef] [PubMed]

Kilpatrick-Liverman, L.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006).
[CrossRef] [PubMed]

Kollias, N.

G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011).
[CrossRef] [PubMed]

G. Zonios, J. Bykowski, N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[CrossRef] [PubMed]

Lambrecht, R.

P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000).
[CrossRef] [PubMed]

Larsson, M.

I. Fredriksson, M. Larsson, T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[CrossRef] [PubMed]

Leahy, M. J.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[CrossRef] [PubMed]

Lee, D. H.

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

Lee, K.

Li, P.

C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012).
[CrossRef]

Li, Y.-H.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Lim, L.

L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[CrossRef] [PubMed]

Lindholm-Sethson, B.

I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008).
[CrossRef] [PubMed]

Liu, H.

Liu, Q.

Lu, W.

D. Zhu, W. Lu, S. Zeng, Q. Luo, “Effect of light losses of sample between two integrating spheres on optical properties estimation,” J. Biomed. Opt. 12(6), 064004 (2007).
[CrossRef] [PubMed]

Luo, B.

Luo, Q.

C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012).
[CrossRef]

D. Zhu, W. Lu, S. Zeng, Q. Luo, “Effect of light losses of sample between two integrating spheres on optical properties estimation,” J. Biomed. Opt. 12(6), 064004 (2007).
[CrossRef] [PubMed]

Mack, M. C.

G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011).
[CrossRef] [PubMed]

Maeda, T.

T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[CrossRef]

Manoharan, R.

Mantis, G.

Marchesini, R.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Martelli, F.

Mascheroni, L.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Matip, R.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[CrossRef] [PubMed]

Moes, C. J. M.

Moussa, G.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[CrossRef] [PubMed]

Murphy, B. W.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

Na, J. I.

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

Naredi, P.

I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008).
[CrossRef] [PubMed]

Nguyen, T. H.

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[CrossRef] [PubMed]

Nichols, B.

S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[CrossRef] [PubMed]

L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[CrossRef] [PubMed]

Nichols, B. S.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

Nikolovski, J.

G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011).
[CrossRef] [PubMed]

Nilsson, D.

I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008).
[CrossRef] [PubMed]

Nilsson, G. E.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[CrossRef] [PubMed]

O’Doherty, J.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[CrossRef] [PubMed]

Palmer, G. M.

Park, K. C.

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

Perelman, L. T.

Pignoli, E.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Pilon, L.

Polefka, T. G.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006).
[CrossRef] [PubMed]

Prahl, S. A.

Qian, Z.

Quirk, C. J.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

Rajaram, N.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[CrossRef] [PubMed]

L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[CrossRef] [PubMed]

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[CrossRef] [PubMed]

Ramanujam, N.

Reichenberg, J. S.

Rylander, H. G.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

Sampson, D. D.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Shin, J. W.

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

Sjöberg, F.

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[CrossRef] [PubMed]

Skala, M. C.

Smith, B.

Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000).
[CrossRef] [PubMed]

Stamatas, G. N.

G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011).
[CrossRef] [PubMed]

Star, W. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Strömberg, T.

I. Fredriksson, M. Larsson, T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[CrossRef] [PubMed]

Sun, Q.

Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000).
[CrossRef] [PubMed]

Takahashi, M.

T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[CrossRef]

Testori, A.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Tran, M.

Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[CrossRef]

Tunnell, J. W.

S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[CrossRef] [PubMed]

L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[CrossRef] [PubMed]

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[CrossRef] [PubMed]

Turlach, B. A.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

Van Dam, J.

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Venturoli, D. R.

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Victor, S. S.

Vrotsos, K. M.

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54(3), 141–150 (1997).
[CrossRef]

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Wang, T.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

Webster, R. J.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

Welch, A. J.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

Winefordner, J. D.

Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000).
[CrossRef] [PubMed]

Wolff, E.

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006).
[CrossRef] [PubMed]

Wu, Y.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Xu, Y.-Y.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Youn, S. W.

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

Yudovsky, D.

Zaccanti, G.

Zaman, R. T.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

Zeng, S.

D. Zhu, W. Lu, S. Zeng, Q. Luo, “Effect of light losses of sample between two integrating spheres on optical properties estimation,” J. Biomed. Opt. 12(6), 064004 (2007).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54(3), 141–150 (1997).
[CrossRef]

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Zhu, C.

Zhu, D.

D. Zhu, W. Lu, S. Zeng, Q. Luo, “Effect of light losses of sample between two integrating spheres on optical properties estimation,” J. Biomed. Opt. 12(6), 064004 (2007).
[CrossRef] [PubMed]

Zhu, X.

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Zonios, G.

Appl. Opt. (7)

Biomed. Opt. Express (1)

Comput. Meth. Prog. Bio. (2)

L. Wang, S. L. Jacques, L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

L. Wang, S. L. Jacques, L. Zheng, “CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Prog. Bio. 54(3), 141–150 (1997).
[CrossRef]

Contact Dermat. (1)

Q. Sun, M. Tran, B. Smith, J. D. Winefordner, “In-situ evaluation of barrier-cream performance on human skin using laser-induced breakdown spectroscopy,” Contact Dermat. 43(5), 259–263 (2000).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Int. J. Cosmet. Sci. (1)

G. N. Stamatas, J. Nikolovski, M. C. Mack, N. Kollias, “Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies,” Int. J. Cosmet. Sci. 33(1), 17–24 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (9)

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J. Biomed. Opt. 10(6), 064020 (2005).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[CrossRef] [PubMed]

S. F. Bish, N. Rajaram, B. Nichols, J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt. 16(12), 120505 (2011).
[CrossRef] [PubMed]

L. Lim, B. Nichols, N. Rajaram, J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[CrossRef] [PubMed]

R. A. De Blasi, N. Almenrader, P. Aurisicchio, M. Ferrari, “Comparison of two methods of measuring forearm oxygen consumption (VO2) by near infrared spectroscopy,” J. Biomed. Opt. 2(2), 171–175 (1997).
[CrossRef] [PubMed]

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[CrossRef] [PubMed]

D. Zhu, W. Lu, S. Zeng, Q. Luo, “Effect of light losses of sample between two integrating spheres on optical properties estimation,” J. Biomed. Opt. 12(6), 064004 (2007).
[CrossRef] [PubMed]

I. Fredriksson, M. Larsson, T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44(3), 145–152 (2006).
[CrossRef] [PubMed]

J. Eur. Acad. Dermatol. Venereol. (1)

J. W. Shin, D. H. Lee, S. Y. Choi, J. I. Na, K. C. Park, S. W. Youn, C. H. Huh, “Objective and non-invasive evaluation of photorejuvenation effect with intense pulsed light treatment in Asian skin,” J. Eur. Acad. Dermatol. Venereol. 25(5), 516–522 (2011).
[CrossRef] [PubMed]

J. Innov. Opt. Health Sci. (3)

C. Jiang, H. He, P. Li, Q. Luo, “Graphics processing unit cluster accelerated Monte Carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(02), 1250004 (2012).
[CrossRef]

S. L. Jacques, “Spectral Imaging and Analysis to Yield Tissue Optical Properties,” J. Innov. Opt. Health Sci. 2(02), 123–129 (2009).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innov. Opt. Health Sci. 4(01), 9–38 (2011).
[CrossRef]

J. Invest. Dermatol. (2)

G. Zonios, J. Bykowski, N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117(6), 1452–1457 (2001).
[CrossRef] [PubMed]

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

J. Surfactants Deterg. (1)

Th. Forster, U. Issberner, H. Hensen, “Lipid/surfactant compounds as a new tool to optimize skin-care properties of personal-cleansing products,” J. Surfactants Deterg. 3(3), 345–352 (2000).
[CrossRef]

Lasers Surg. Med. (1)

Y.-H. Li, Y. Wu, J. Z. S. Chen, X. Zhu, Y.-Y. Xu, J. Chen, G.-H. Dong, X.-H. Gao, H.-D. Chen, “A Split-Face Study of Intense Pulsed Light on Photoaging Skin in Chinese Population,” Lasers Surg. Med. 42(2), 185–191 (2010).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

I. Bodén, D. Nilsson, P. Naredi, B. Lindholm-Sethson, “Characterization of healthy skin using near infrared spectroscopy and skin impedance,” Med. Biol. Eng. Comput. 46(10), 985–995 (2008).
[CrossRef] [PubMed]

Med. Phys. (1)

J. C. Finlay, T. H. Foster, “Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation,” Med. Phys. 31(7), 1949–1959 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Rev. (1)

T. Maeda, N. Arakawa, M. Takahashi, Y. Aizu, “Monte Carlo simulation of spectral reflectance using a multilayered skin tissue model,” Opt. Rev. 17(3), 223–229 (2010).
[CrossRef]

Photochem. Photobiol. (1)

R. Marchesini, N. Cascinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. II: Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55(4), 515–522 (1992).
[CrossRef] [PubMed]

Skin Res. Technol. (3)

J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007).
[CrossRef] [PubMed]

L. Kilpatrick-Liverman, P. Kazmi, E. Wolff, T. G. Polefka, “The use of near-infrared spectroscopy in skin care applications,” Skin Res. Technol. 12(3), 162–169 (2006).
[CrossRef] [PubMed]

P. Clarys, K. Alewaeters, R. Lambrecht, A. O. Barel, “Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®,” Skin Res. Technol. 6(4), 230–238 (2000).
[CrossRef] [PubMed]

Other (3)

Courage & Khazaka, “Information and operating instructions for the Cutometer MPA 580 and its probe,” Koln, Germany: CK electronic GmbH (2005).

S. L. Jacques, “Skin Optics,” (1998), http://omlc.ogi.edu/news/jan98/skinoptics.html .

S. A. Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The face of the optical fiber probe. Six 400 μm diameter source fibers surrounded a single central 400 μm diameter detection fiber. The center-to-center spacing was 480 μm. Beyond r = 740 μm, a metal flange supported the fibers (not shown here).

Fig. 2
Fig. 2

The two-layered MC-based LUT for fiber probe reflectance.

Fig. 3
Fig. 3

Typical spectrum and parameters of forearm skin with different types, (a) white skin, (b) yellow skin, and (c) brown skin.

Fig. 4
Fig. 4

Correlation between the melanin index and the melanin volume fraction.

Fig. 5
Fig. 5

The tracings of the blood volume fraction, B, and the blood saturation, S, changes during forearm venous occlusion and ischemia. Blue and red circles were the period of forearm venous occlusion and forearm ischemia, respectively. (a) Typical values of B, (b) typical values of S, (c) relative values of B, and (d) relative values of S.

Fig. 6
Fig. 6

The changes in the blood volume fraction, B, the blood saturation, S, and the erythema index during hot compress. The upper panel was typical result, and the lower panel was relative result.

Fig. 7
Fig. 7

The probability of the emitted photon (880 μm away from the light incident point) reaching the depth from 5 to 1500 μm in steps of 5 μm by Monte Carlo simulation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

M R =6 dr d+r 2R(x)x arccos d 2 + x 2 r 2 2dx dx
μ a,epi (λ)= μ a,mel (λ)M+ μ a,back (λ)( 1M )
μ a,mel (λ)=6.60× 10 11 λ 3.33
μ a,back (λ)=7.84× 10 8 λ 3.255
μ a,derm (λ)=B( μ a,oxy (λ)S+ μ a,deoxy (λ)( 1S ) )
μ s '(λ)= μ s '( λ 0 ) ( λ λ 0 ) b
R s =getR( μ a,epi , μ a,derm , μ s ')
χ= [ K R s ( μ a , μ a , μ s ') R e ( μ a , μ s ') 1 ] 2
δ= λ=500nm 900nm [ K R s (λ) R m (λ) ] 2

Metrics