Abstract

A tapered silica photonic crystal fiber was designed and fabricated to generate more than one octave spanning supercontinuum (from 550 nm to 1400 nm at −30 dB level), by an input pulse of 40 fs 200 pJ directly from an Yb:fiber ring laser. The low pulse energy spectrum broadening are favorable to generate the high contrast fceo signals with low noise. The fceo signal with 40 dB signal-to-noise ratio was detected, which helps to build a compact real-world frequency comb.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
    [CrossRef] [PubMed]
  2. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
    [CrossRef]
  3. N. R. Newbury, W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
    [CrossRef]
  4. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [CrossRef]
  5. N. R. Newbury, B. R. Washburn, K. L. Corwin, R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28(11), 944–946 (2003).
    [CrossRef] [PubMed]
  6. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002).
    [CrossRef] [PubMed]
  7. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
    [CrossRef] [PubMed]
  8. F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
    [CrossRef] [PubMed]
  9. K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
    [CrossRef]
  10. T. Wilken, T. W. Hänsch, T. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Lo Curto, L. Pasquini, and C. Lovis, “High precision Calibration of Spectrographs in Astronomy,” in Conference on Laser and Electro-Optics (CLEO) (2010), paper CMHH3.
  11. A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
    [CrossRef] [PubMed]
  12. T. Wilken, P. Vilar-Welter, T. Hänsch, and T. Udem, “High repetition rate, tunable femtosecond Yb-fiber laser,” in Conference on Laser and Electro-Optics (CLEO) (2010), paper CFK2.
  13. A. Wang, H. Yang, Z. Zhang, “503MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator,” Opt. Express 19(25), 25412–25417 (2011).
    [CrossRef] [PubMed]
  14. C. Li, G. Wang, T. Jiang, A. Wang, Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
    [CrossRef] [PubMed]
  15. H. W. Chen, G. Chang, S. Xu, Z. Yang, F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
    [CrossRef] [PubMed]
  16. C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett. 37(10), 1778–1780 (2012).
    [CrossRef] [PubMed]
  17. T. Jiang, G. Wang, W. Zhang, C. Li, A. Wang, Z. Zhang, “Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz,” Opt. Lett. 38(4), 443–445 (2013).
    [CrossRef] [PubMed]
  18. G. Wang, T. Jiang, C. Li, H. Yang, A. Wang, Z. Zhang, “Octave-spanning spectrum of femtosecond Yb:fiber ring laser at 528 MHz repetition rate in microstructured tellurite fiber,” Opt. Express 21(4), 4703–4708 (2013).
    [CrossRef] [PubMed]
  19. A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express 16(7), 4706–4712 (2008).
    [CrossRef] [PubMed]
  20. H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009).
    [CrossRef] [PubMed]
  21. S. P. Stark, A. Podlipensky, N. Y. Joly, P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27(3), 592–598 (2010).
    [CrossRef]
  22. S. T. Sørensen, A. Judge, C. L. Thomsen, O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum-group-acceleration matching,” Opt. Lett. 36(6), 816–818 (2011).
    [CrossRef] [PubMed]
  23. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles--verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
    [CrossRef] [PubMed]
  24. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [CrossRef] [PubMed]
  25. Y. Song, K. Jung, J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011).
    [CrossRef] [PubMed]
  26. S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
    [CrossRef]

2013 (3)

2012 (4)

2011 (4)

2010 (3)

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

S. P. Stark, A. Podlipensky, N. Y. Joly, P. St. J. Russell, “Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber,” J. Opt. Soc. Am. B 27(3), 592–598 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2004 (1)

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

2003 (2)

2002 (2)

2001 (1)

K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Abe, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Andersen, T. V.

Aozasa, S.

Asobe, M.

Bang, O.

Bartels, A.

A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Chang, G.

Chen, H. W.

Corwin, K. L.

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Diddams, S. A.

Dudley, J. M.

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

Farrell, C.

Gaeta, A. L.

Gu, X.

Hänsch, T. W.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009).
[CrossRef] [PubMed]

Heinecke, D.

A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Hirai, A.

Holzwarth, R.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009).
[CrossRef] [PubMed]

Hong, F. L.

Hundertmark, H.

Inaba, H.

Ishii, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Ishizawa, A.

Jakobsen, C.

Jiang, T.

Johansen, J.

Johnson, T. A.

Joly, N. Y.

Judge, A.

Jung, K.

Kärtner, F. X.

Kim, J.

Kimmel, M.

Kobayashi, Y.

Larsen, C.

Li, C.

Lo Curto, G.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

Lovis, C.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

Lundquist, T. R.

Manescau, A.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Møller, U.

Mori, A.

Moselund, P. M.

Nakano, H.

Newbury, N. R.

Nishikawa, T.

Nugent-Glandorf, L.

O’Shea, P.

Okamoto, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Onae, A.

Paschotta, R.

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

Pasquini, L.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

Podlipensky, A.

Rammler, S.

Reid, D. T.

Russell, P. S.

Russell, P. St. J.

Serrels, K. A.

Shibata, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Shreenath, A. P.

Song, Y.

Sørensen, S. T.

Stark, S. P.

Steinmetz, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

Sugiura, T.

Swann, W. C.

Tadanaga, O.

Takada, H.

Takada, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Thomsen, C. L.

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Trebino, R.

Udem, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

Vedagarbha, P.

Wang, A.

Wang, G.

Washburn, B. R.

Wetzel, B.

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

Wilken, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009).
[CrossRef] [PubMed]

Windeler, R. S.

Xu, L.

Xu, S.

Yang, H.

Yang, Z.

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Yoshida, M.

Zeek, E.

Zhang, W.

Zhang, Z.

Annu Rev Anal Chem (Palo Alto Calif) (1)

F. Adler, M. J. Thorpe, K. C. Cossel, J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu Rev Anal Chem (Palo Alto Calif) 3(1), 175–205 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Takada, M. Abe, M. Shibata, M. Ishii, K. Okamoto, “Low-Crosstalk 10-GHz-Spaced 512-Channel Arrayed-Waveguide Grating Multi/Demultiplexer Fabricated on a 4-in Wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Mon. Not. R. Astron. Soc. (1)

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010).
[CrossRef]

Opt. Commun. (1)

S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (11)

C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett. 37(10), 1778–1780 (2012).
[CrossRef] [PubMed]

H. W. Chen, G. Chang, S. Xu, Z. Yang, F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012).
[CrossRef] [PubMed]

C. Li, G. Wang, T. Jiang, A. Wang, Z. Zhang, “750 MHz fundamental repetition rate femtosecond Yb:fiber ring laser,” Opt. Lett. 38(3), 314–316 (2013).
[CrossRef] [PubMed]

T. Jiang, G. Wang, W. Zhang, C. Li, A. Wang, Z. Zhang, “Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz,” Opt. Lett. 38(4), 443–445 (2013).
[CrossRef] [PubMed]

S. T. Sørensen, A. Judge, C. L. Thomsen, O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum-group-acceleration matching,” Opt. Lett. 36(6), 816–818 (2011).
[CrossRef] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[CrossRef] [PubMed]

Y. Song, K. Jung, J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011).
[CrossRef] [PubMed]

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002).
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[CrossRef] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28(11), 944–946 (2003).
[CrossRef] [PubMed]

F. L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28(17), 1516–1518 (2003).
[CrossRef] [PubMed]

Science (1)

A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Other (2)

T. Wilken, P. Vilar-Welter, T. Hänsch, and T. Udem, “High repetition rate, tunable femtosecond Yb-fiber laser,” in Conference on Laser and Electro-Optics (CLEO) (2010), paper CFK2.

T. Wilken, T. W. Hänsch, T. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Lo Curto, L. Pasquini, and C. Lovis, “High precision Calibration of Spectrographs in Astronomy,” in Conference on Laser and Electro-Optics (CLEO) (2010), paper CMHH3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated SC generation in PCFs with 0.53 d/Λ ratio and the pitches from 1 μm to 2.5 μm.

Fig. 2
Fig. 2

(A) Simulated dispersion map of PCFs with the d/Λ ratio of 0.53 and the pitches from 1 μm to 3.5 μm. The black curve: Zero-dispersion wavelength for different fiber pitches; Inner region: anomalous dispersion; Outer region: normal dispersion; (B)(C)(D) the dispersion curves of three different fibers with the pitch of 3.1 μm (Fiber I), 1.18 μm (Fiber II), and 1.06 μm (Fiber III).

Fig. 3
Fig. 3

(A) The optical configuration of Yb:fiber laser frequency combs; WDM: wavelength division multiplexer; SMF: single mode fiber; HWP: half wave plate; QWP: quarter wave plate; PBS: polarization beam splitter; TGP: transmission grating pair; M: mirror; PPLN: periodically poled lithium niobate; DM: dielectric mirror; APD: avalanche photodiode; (B) the autocorrelation traces of measured (blue line) and calculated (black line) output pulses from the oscillator; (C) the recorded spectrum of the output pulses.

Fig. 4
Fig. 4

(A) The experimental (blue line) and simulated (black line) spectrum at taper output; (B) Simulated 40 fs 200 pJ pulse propagation in a 20cm tapered fiber with 2 cm untapered sections and 3 cm long transitions at both ends and a central uniform taper waist of 10 cm, the pitch of the central section is 1.18 μm. Two dark lines corresponds to the two ZDWs at 788 nm and 1062 nm.

Fig. 5
Fig. 5

fceo beat signal with 40 dB S/N ratio

Fig. 6
Fig. 6

Simulated SC generation (black line) and their coherence curves (blue line) of different pulses in different length of Fiber II. (a) 40 fs 200 pJ pulses in 10 cm Fiber II; (b) 80 fs 400 pJ pulses in 10 cm Fiber II; (c) 40 fs 200 pJ pulses in 20 cm Fiber II ; (d) 40 fs 300 pJ pulses in 10 cm Fiber II.

Metrics