Abstract

Deep Ridge InGaAsP/InP Light Emitting Transistors (LET) with ~1.5μm light emissions have been fabricated and characterized. In the deep ridge LETs, all the light emissions are from the intrinsic base area, which makes them more suitable for high speed direct modulation. A collector emitter voltage (VCE) dependent output power, which has been predicted numerically, is observed experimentally for the first time and may facilitate the use of LETs in optoelectronic integrations. A novel trend of self-heating related saturation of light power with base current is also observed, which is explained by the three port operation of the device. Further, an abnormal common-emitter current-voltage (I-V) characteristic of the deep ridge LETs is shown and is attributed to the non-radiative recombination centers at the ridge side walls. With the good quality of the quantum wells, laser operation at near room temperature is achieved in the deep ridge LET with 800μm cavity length. With proper surface passivation techniques and device optimizations, performance of the deep ridge transistor based optoelectronic devices can be further enhanced greatly and ultra low power consumption which is highly desirable can be expected.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
    [CrossRef]
  2. M. Feng, N. Holonyak, R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84(11), 1952–1954 (2004).
    [CrossRef]
  3. R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
    [CrossRef]
  4. M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
    [CrossRef]
  5. S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
    [CrossRef]
  6. C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
    [CrossRef]
  7. G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
    [CrossRef]
  8. Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
    [CrossRef]
  9. M. Shirao, T. Sato, N. Sato, N. Nishiyama, S. Arai, “Room-temperature operation of npn- AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-µm wavelength,” Opt. Express 20(4), 3983–3989 (2012).
    [CrossRef] [PubMed]
  10. N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
    [CrossRef]
  11. Z. G. Duan, W. Shi, L. Chrostowski, X. D. Huang, N. Zhou, G. G. Chai, “Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser,” Opt. Express 18(2), 1501–1509 (2010).
    [CrossRef] [PubMed]
  12. S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011).
    [CrossRef] [PubMed]
  13. S. H. Lee, D. Parekh, T. Shindo, W. Yang, P. Guo, D. Takahashi, N. Nishiyama, C. J. Chang-Hasnain, S. Arai, “Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions,” Opt. Express 18(16), 16370–16378 (2010).
    [CrossRef] [PubMed]
  14. W. Shi, L. Chrostowski, B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 20(24), 2141–2143 (2008).
    [CrossRef]
  15. R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
    [CrossRef]
  16. R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
    [CrossRef]
  17. G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
    [CrossRef]
  18. H. Shimizu, Y. Nakano, “Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5-μm wavelength range,” IEEE Photonics Technol. Lett. 19(24), 1973–1975 (2007).
    [CrossRef]

2013

N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
[CrossRef]

2012

2011

S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011).
[CrossRef] [PubMed]

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

2010

2009

C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
[CrossRef]

G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

2008

W. Shi, L. Chrostowski, B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

2007

H. Shimizu, Y. Nakano, “Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5-μm wavelength range,” IEEE Photonics Technol. Lett. 19(24), 1973–1975 (2007).
[CrossRef]

2005

R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

2004

M. Feng, N. Holonyak, R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84(11), 1952–1954 (2004).
[CrossRef]

1998

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

1996

G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
[CrossRef]

Amemiya, T.

N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
[CrossRef]

Arai, S.

Benchimol, J. L.

G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
[CrossRef]

Chai, G. G.

Chan, R.

R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

M. Feng, N. Holonyak, R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84(11), 1952–1954 (2004).
[CrossRef]

Chang-Hasnain, C. J.

Charbonneau, S.

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

Chiang, C. C.

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

Chrostowski, L.

Z. G. Duan, W. Shi, L. Chrostowski, X. D. Huang, N. Zhou, G. G. Chai, “Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser,” Opt. Express 18(2), 1501–1509 (2010).
[CrossRef] [PubMed]

W. Shi, L. Chrostowski, B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Cohen, G. M.

G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
[CrossRef]

Dixon, F.

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

Driad, R.

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

Duan, Z. G.

Dupuis, R. D.

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

Faraji, B.

W. Shi, L. Chrostowski, B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Feng, M.

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

M. Feng, N. Holonyak, R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84(11), 1952–1954 (2004).
[CrossRef]

Guo, P.

Holonyak, N.

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

M. Feng, N. Holonyak, R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84(11), 1952–1954 (2004).
[CrossRef]

Horng, R. H.

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

Hsiao, H. Y.

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

Huang, X. D.

Huang, Y.

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

Kong, D. H.

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011).
[CrossRef] [PubMed]

Laframboise, S.

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

Le Roux, G.

G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
[CrossRef]

Lee, S. H.

Legay, P.

G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
[CrossRef]

Liang, S.

S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011).
[CrossRef] [PubMed]

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

Lin, H. I.

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

Lu, Z. H.

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

McAlister, S. P.

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

McKinnon, W. R.

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

Nakano, Y.

H. Shimizu, Y. Nakano, “Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5-μm wavelength range,” IEEE Photonics Technol. Lett. 19(24), 1973–1975 (2007).
[CrossRef]

Nishiyama, N.

Niu, B.

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

Pan, J. Q.

Parekh, D.

Poole, P. J.

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

Ryou, J. H.

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

Sapriel, J.

G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
[CrossRef]

Sato, N.

N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
[CrossRef]

M. Shirao, T. Sato, N. Sato, N. Nishiyama, S. Arai, “Room-temperature operation of npn- AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-µm wavelength,” Opt. Express 20(4), 3983–3989 (2012).
[CrossRef] [PubMed]

Sato, T.

N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
[CrossRef]

M. Shirao, T. Sato, N. Sato, N. Nishiyama, S. Arai, “Room-temperature operation of npn- AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-µm wavelength,” Opt. Express 20(4), 3983–3989 (2012).
[CrossRef] [PubMed]

Shi, W.

Z. G. Duan, W. Shi, L. Chrostowski, X. D. Huang, N. Zhou, G. G. Chai, “Design and epitaxy of 1.5 microm InGaAsP-InP MQW material for a transistor laser,” Opt. Express 18(2), 1501–1509 (2010).
[CrossRef] [PubMed]

W. Shi, L. Chrostowski, B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

Shimizu, H.

H. Shimizu, Y. Nakano, “Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5-μm wavelength range,” IEEE Photonics Technol. Lett. 19(24), 1973–1975 (2007).
[CrossRef]

Shindo, T.

Shirao, M.

N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
[CrossRef]

M. Shirao, T. Sato, N. Sato, N. Nishiyama, S. Arai, “Room-temperature operation of npn- AlGaInAs/InP multiple quantum well transistor laser emitting at 1.3-µm wavelength,” Opt. Express 20(4), 3983–3989 (2012).
[CrossRef] [PubMed]

Takahashi, D.

Then, H. W.

G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
[CrossRef]

C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

Walter, G.

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
[CrossRef]

G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

Wang, W.

S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011).
[CrossRef] [PubMed]

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

Wu, C. H.

C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
[CrossRef]

Wuu, D. S.

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

Yang, W.

Yukinari, M.

N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
[CrossRef]

Zhao, L. J.

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011).
[CrossRef] [PubMed]

Zheng, X.

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

Zhou, N.

Zhu, H. L.

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

S. Liang, D. H. Kong, H. L. Zhu, L. J. Zhao, J. Q. Pan, W. Wang, “InP-based deep-ridge NPN transistor laser,” Opt. Lett. 36(16), 3206–3208 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Feng, N. Holonyak, G. Walter, R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87(13), 131103 (2005).
[CrossRef]

M. Feng, N. Holonyak, R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84(11), 1952–1954 (2004).
[CrossRef]

R. Chan, M. Feng, N. Holonyak, G. Walter, “Microwave operation and modulation of a transistor laser,” Appl. Phys. Lett. 86(13), 131114 (2005).
[CrossRef]

M. Feng, N. Holonyak, H. W. Then, C. H. Wu, G. Walter, “Tunnel junction transistor laser,” Appl. Phys. Lett. 94(4), 041118 (2009).
[CrossRef]

S. Liang, H. L. Zhu, D. H. Kong, B. Niu, L. J. Zhao, W. Wang, “Temperature performance of the edge emitting transistor laser,” Appl. Phys. Lett. 99(1), 013503 (2011).
[CrossRef]

C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak., “Scaling of light emitting transistor for multi-gigahertz optical bandwidth,” Appl. Phys. Lett. 94(17), 171101 (2009).
[CrossRef]

G. Walter, C. H. Wu, H. W. Then, M. Feng, N. Holonyak., “Tilted-charge high speed (7 GHz) light emitting diode,” Appl. Phys. Lett. 94(23), 231125 (2009).
[CrossRef]

R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93(11), 111907 (2008).
[CrossRef]

R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett. 73(5), 665–667 (1998).
[CrossRef]

G. M. Cohen, J. L. Benchimol, G. Le Roux, P. Legay, J. Sapriel, “P and n type carbon doping of InxGa1−xAsyP1−y alloys lattice matched to InP,” Appl. Phys. Lett. 68(26), 3793–3975 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Sato, M. Shirao, T. Sato, M. Yukinari, N. Nishiyama, T. Amemiya, S. Arai, “Design and characterization of AlGaInAs/InP buried heterostructure transistor lasers emitting at 1.3-μm wavelength,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502608 (2013).
[CrossRef]

IEEE Photonics Technol. Lett.

H. Shimizu, Y. Nakano, “Monolithic integration of a waveguide optical isolator with a distributed feedback laser diode in the 1.5-μm wavelength range,” IEEE Photonics Technol. Lett. 19(24), 1973–1975 (2007).
[CrossRef]

W. Shi, L. Chrostowski, B. Faraji, “Numerical study of the optical saturation and voltage control of a transistor vertical-cavity surface-emitting laser,” IEEE Photonics Technol. Lett. 20(24), 2141–2143 (2008).
[CrossRef]

J. Appl. Phys.

Y. Huang, J. H. Ryou, R. D. Dupuis, F. Dixon, M. Feng, N. Holonyak., “InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer,” J. Appl. Phys. 109(6), 063106 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of InP based deep-ridge (a) and shallow ridge (b) LETs. (only half of the symmetric ridge waveguide is shown).

Fig. 2
Fig. 2

(a) PL spectra of the MQWs in deep-ridge and shallow ridge LETs. (b) L-IB characteristics of LETs with a 800μm cavity length under two terminal configuration (emitter-base with floating collector) measured at 20 °C. The inset show the corresponding emission spectra.

Fig. 3
Fig. 3

(a)L-IB curves for VCE from 0 to 1.8V of a deep ridge LET with 200μm cavity length under common emitter configuration at 20 °C, the increase step is 0.2V. (b) VBE as a function of IB corresponding to the curves in (a). The dotted lines in (a) indicate the currents where the decrease of light power with IB slows down.

Fig. 4
Fig. 4

L-IB curves of two deep ridge LETs measured at 20 °C and 40 °C with VCE = 1.4 V under common emitter mode.

Fig. 5
Fig. 5

Common-emitter I-V characteristics of the two LETs measured at 20 °C and 40 °C. IB is varied from 10mA to 60mA with an increment of 10 mA for all the figures.

Fig. 6
Fig. 6

(a)L-IB curves of a TL with 800μm cavity length under two terminal configuration (floating collector) and pulse working condition (2μs pulse width and 1000Hz repetition rate). (b) Threshold current of the TL as a function of temperature.

Metrics