Abstract

A 40 Gb/s bidirectional optical link using four-channel optical subassembly (OSA) modules and two different wavelengths for the up- and down-link is demonstrated. Widely separated wavelengths of 850 nm and 1060 nm are used to reduce the optical crosstalk between the up- and down-link signals. Due to the integration capabilities of silicon, the OSA is implemented, all based on silicon: V-grooved silicon substrates to embed fibers and silicon optical benches (SiOBs) to mount optical components. The SiOBs are separately prepared for array chips of photodiodes (PDs), vertical-cavity surface-emitting lasers (VCSELs), and monitoring PDs, which are serially configured on an optical fiber array for direct coupling to the transmission fibers. The separation of the up- and down-link wavelengths is implemented using a wavelength-filtering 45° mirror which is formed in the fiber under the VCSEL. To guide the light signal to the PD another 45° mirror is formed at the end of the fiber. The fabricated bidirectional OSA module shows good performances with a clear eye-diagram and a BER of less than 10−12 at a data rate of 10 Gb/s for each of the channels with input powers of −8 dBm and −6.5 dBm for the up-link and the down-link, respectively. The measured inter-channel crosstalk of the bidirectional 40 Gb/s optical link is about −22.6 dB, while the full-duplex operation mode demonstrates negligible crosstalk between the up- and down-link.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Schow, F. E. Doany, A. V. Rylyakov, B. G. Lee, C. V. Jahnes, Y. H. Kwark, C. W. Baks, D. M. Kuchta, J. A. Kash, “A 24-channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single “holey” CMOS IC,” J. Lightwave Technol. 29(4), 542–553 (2011).
    [CrossRef]
  2. J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
    [CrossRef]
  3. J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
    [CrossRef]
  4. J. D. Ingham, R. V. Penty, I. H. White, “Bidirectional multimode-fiber communication links using dual-purpose vertical-cavity devices,” J. Lightwave Technol. 24(3), 1283–1294 (2006).
    [CrossRef]
  5. N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).
  6. G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
    [CrossRef]
  7. Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013).
    [CrossRef]
  8. B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
    [CrossRef]
  9. Y. Nekado, M. Iwase, “1.3-μm range vertical-cavity surface-emitting laser (VCSEL) module,” Furukawa Review 27, 72–78 (2005).
  10. K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
    [CrossRef]
  11. D. Paladino, A. Iadicicco, S. Campopiano, A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009).
    [CrossRef] [PubMed]
  12. J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).
  13. A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).
  14. M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
    [CrossRef]
  15. L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).
  16. MaxCap-OM3 - 10 Gb/s multimode optical fiber, high-speed laser-launch multimode fiber (OM3), http://communications.draka.com/sites/usa/Pages/MultiModeFibers_MaxCap.aspx (2013).
  17. A. Aguayo, “Advances in high frequency printed circuit board materials,” Microwave Eng. Europe, December 2009, 11-14 (2009).

2013 (1)

Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013).
[CrossRef]

2012 (1)

J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
[CrossRef]

2011 (3)

C. L. Schow, F. E. Doany, A. V. Rylyakov, B. G. Lee, C. V. Jahnes, Y. H. Kwark, C. W. Baks, D. M. Kuchta, J. A. Kash, “A 24-channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single “holey” CMOS IC,” J. Lightwave Technol. 29(4), 542–553 (2011).
[CrossRef]

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
[CrossRef]

2010 (1)

J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[CrossRef]

2009 (2)

D. Paladino, A. Iadicicco, S. Campopiano, A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009).
[CrossRef] [PubMed]

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

2008 (1)

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

2007 (1)

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

2006 (1)

2005 (1)

Y. Nekado, M. Iwase, “1.3-μm range vertical-cavity surface-emitting laser (VCSEL) module,” Furukawa Review 27, 72–78 (2005).

2003 (1)

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

2000 (1)

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

Baks, C. W.

Bimberg, D.

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Blokhin, S. A.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Campopiano, S.

Cho, H. S.

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

Cho, M. H.

N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).

Cho, M.-H.

J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
[CrossRef]

Choi, J.-S.

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

Cusano, A.

Doany, F. E.

Eo, J.-Y.

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

Ergun, Y.

M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
[CrossRef]

Fiol, G.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Fu, L.

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

Gareso, P.

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

Heo, Y. S.

Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013).
[CrossRef]

Hofmann, W.

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

Hopfer, F.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Hostut, M.

M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
[CrossRef]

Hwang, N.

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

Iadicicco, A.

Im, D.-M.

N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).

Ingham, J. D.

Iwase, M.

Y. Nekado, M. Iwase, “1.3-μm range vertical-cavity surface-emitting laser (VCSEL) module,” Furukawa Review 27, 72–78 (2005).

Jagadish, C.

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

Jahnes, C. V.

Joe, Y. S.

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

Jolley, G.

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

Joo, G.-C.

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

Kang, H. S.

Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013).
[CrossRef]

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

Kang, S.-K.

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

Karachinsky, L. Y.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Kash, J. A.

Kilic, A.

M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
[CrossRef]

Kim, Y. W.

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

Kuchta, D. M.

Kuffner, P.

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

Kwark, Y. H.

Ledentsov, N. N.

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

Ledentsova, N. N.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Lee, B. G.

Lee, H.-S.

J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[CrossRef]

Lee, J. J.

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

Lee, S.

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

Lee, S.-H.

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

Lee, S.-S.

J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[CrossRef]

Lee, T.-W.

J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
[CrossRef]

N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).

Li, Q.

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

Lim, K.-S.

Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013).
[CrossRef]

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

Lott, J. A.

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Maximov, M. V.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Mosera, P.

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

Mutig, A.

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Nekado, Y.

Y. Nekado, M. Iwase, “1.3-μm range vertical-cavity surface-emitting laser (VCSEL) module,” Furukawa Review 27, 72–78 (2005).

Nguyen, N. T. H.

N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).

Novikov, I. I.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Paladino, D.

Park, H.-H.

J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
[CrossRef]

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).

Park, H.-J.

Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013).
[CrossRef]

Park, J.-Y.

J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[CrossRef]

Park, K.-S.

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

Penty, R. V.

Rho, B. S.

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

Rylyakov, A. V.

Sakiroglu, S.

M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
[CrossRef]

Sangirov, J.

J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
[CrossRef]

N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).

Schow, C. L.

Shchukin, V. A.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Sohn, I.-B.

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

Sokmen, I.

M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
[CrossRef]

Son, Y.-S.

J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[CrossRef]

Song, M.-K.

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

Stintz, A.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Tan, H. H.

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

Ukaegbu, I. A.

J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
[CrossRef]

Werner, P.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

White, I. H.

Wolf, P.

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

Yang, D. J.

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

Yoon, S.

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

Yu, C. H.

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

Zakharov, N. D.

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

Appl. Phys. Lett. (1)

L. Fu, Q. Li, P. Kuffner, G. Jolley, P. Gareso, H. H. Tan, C. Jagadish, “Two-color InGaAs/GaAs quantum dot infrared photodetectors by selective area interdiffusion,” Appl. Phys. Lett. 93(1), 013504 (2008).

ETRI Journal (1)

J. Sangirov, I. A. Ukaegbu, T.-W. Lee, M.-H. Cho, H.-H. Park, “Signal synchronization using a flicker reduction and denoising algorithm for video-signal optical interconnect,” ETRI Journal 34(1), 122–125 (2012).
[CrossRef]

Furukawa Review (1)

Y. Nekado, M. Iwase, “1.3-μm range vertical-cavity surface-emitting laser (VCSEL) module,” Furukawa Review 27, 72–78 (2005).

IEEE Photon. Technol. Lett. (3)

K.-S. Lim, J. J. Lee, S. Lee, S. Yoon, C. H. Yu, I.-B. Sohn, H. S. Kang, “A novel low-cost fiber in-line-type bidirectional optical subassembly,” IEEE Photon. Technol. Lett. 19(16), 1233–1235 (2007).
[CrossRef]

M. Hostut, A. Kilic, S. Sakiroglu, Y. Ergun, I. Sokmen, “Voltage tunable dual-band quantum-well infrared photodetector for third-generation thermal imaging,” IEEE Photon. Technol. Lett. 23(19), 1370–1372 (2011).
[CrossRef]

J.-Y. Park, H.-S. Lee, S.-S. Lee, Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett. 22(24), 1790–1792 (2010).
[CrossRef]

IEEE Trans. Adv. Packag. (1)

G.-C. Joo, S.-H. Lee, K.-S. Park, J.-S. Choi, N. Hwang, M.-K. Song, “A novel bidirectional optical coupling module for subscribers,” IEEE Trans. Adv. Packag. 23(4), 681–685 (2000).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Eng. Lett. (1)

Y. S. Heo, H.-J. Park, H. S. Kang, K.-S. Lim, “1/10 Gb/s single transistor-outline-CAN bidirectional optical subassembly for a passive optical network,” Opt. Eng. Lett. 52(1), 010501 (2013).
[CrossRef]

Opt. Express (1)

Proc. SPIE (3)

B. S. Rho, H. S. Cho, J.-Y. Eo, S.-K. Kang, H.-H. Park, Y. W. Kim, Y. S. Joe, D. J. Yang, “New architecture of optical interconnection using 45°-ended connection rods in waveguide-embedded printed circuit boards,” Proc. SPIE 4997, 71–78 (2003).
[CrossRef]

J. A. Lott, V. A. Shchukin, N. N. Ledentsova, A. Stintz, F. Hopfer, A. Mutig, G. Fiol, D. Bimberg, S. A. Blokhin, L. Y. Karachinsky, I. I. Novikov, M. V. Maximov, N. D. Zakharov, P. Werner, “20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions,” Proc. SPIE 7211(14), 1–12 (2009).

A. Mutig, P. Mosera, J. A. Lott, P. Wolf, W. Hofmann, N. N. Ledentsov, D. Bimberg, “High-speed 850 and 980 nm VCSELs for high-performance computing applications,” Proc. SPIE 7338(19), 1–7 (2011).

Other (3)

N. T. H. Nguyen, J. Sangirov, D.-M. Im, M. H. Cho, T.-W. Lee, H.-H. Park, “Bidirectional optical transceiver integrated with an envelope detector for automatically controlling the direction of transmission,” Proc. ECTC, 2098–2100 (2009).

MaxCap-OM3 - 10 Gb/s multimode optical fiber, high-speed laser-launch multimode fiber (OM3), http://communications.draka.com/sites/usa/Pages/MultiModeFibers_MaxCap.aspx (2013).

A. Aguayo, “Advances in high frequency printed circuit board materials,” Microwave Eng. Europe, December 2009, 11-14 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

The structure of the four-channel bidirectional OSA module: (a) top-view and (b) cross-sectional view.

Fig. 2
Fig. 2

Detailed structure of the SiOB used to package the VCSEL, PD, and M-PD array chips on the fiber array.

Fig. 3
Fig. 3

The bidirectional OSA module: (a) light receiving and transmission schemes for the bidirectional optical link and (b) a photograph of the assembled OSA module.

Fig. 4
Fig. 4

The relative responsivities of PDs for different wavelengths.

Fig. 5
Fig. 5

Simulated transmittance vs wavelength curves for the wavelength-filtering mirrors used in the OSA modules (a) for the up-link and (b) for the down-link.

Fig. 6
Fig. 6

Measured transmittances and reflectances of the wavelength-filtering mirrors (a) for the up-link and (b) for the down-link.

Fig. 7
Fig. 7

The measured optical crosstalk of the bidirectional optical link (a) without the M-PD and (b) with the M-PD components.

Fig. 8
Fig. 8

Results of the reliability test during the thermal variation assessment. The VCSEL light power and PD responsivities are compared before and after thermal variation: (a) light power at 850 nm, (b) light power at 1060 nm, (c) responsivity at 850 nm, and (d) responsivity at 1060 nm.

Fig. 9
Fig. 9

Light transmission scheme of an end-to-end optical link using the proposed bidirectional OSA modules.

Fig. 10
Fig. 10

The measured coupling loss of the bidirectional end-to-end optical link: (a) without M-PD and (b) with M-PD components.

Fig. 11
Fig. 11

Photograph of the demonstration system for a four-channel bidirectional optical link with the up-link module (left) and the down link module (right) installed on the same evaluation board: the inset shows a top view of the main board, showing the OSA module with the optical components of the TRx IC board and chips.

Fig. 12
Fig. 12

The measured frequency responses with the crosstalk of the unidirectional up-link: (a) crosstalk from Ch1 to other channels, (b) crosstalk from Ch2 to other channels, (c) crosstalk from Ch3 to other channels and (d) crosstalk from Ch4 to other channels.

Fig. 13
Fig. 13

Measured eye-diagrams of the four-channel half-duplex bidirectional optical link at 10 Gb/s/ch: (a) For the up-link (850 nm) and (b) for the down-link (1060 nm), 16.6 ps/div is shown in the diagram.

Fig. 14
Fig. 14

The BER measurement results of the half-duplex bidirectional optical link at 10 Gb/s/ch: (a) For the up-link (850 nm) and (b) for the down-link (1060 nm).

Fig. 15
Fig. 15

Measured eye-diagrams of the bidirectional optical link at 10 Gb/s for (a) half-duplex and (b) full-duplex signal transmissions with 24.4 ps/div.

Fig. 16
Fig. 16

The measured S-parameters of the bidirectional optical link for full-duplex and half-duplex signal transmission (without and with crosstalk between the up- and down-link, respectively).

Tables (2)

Tables Icon

Table 1 End-to-end Optical Coupling Loss of the OSA-based Bidirectional Optical Link

Tables Icon

Table 2 Specifications for the End-to-end Optical Link Power Budget Estimation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P Tx P Rx > P CL + P FL .
P MM =( P Tx P Rx )( P CL + P FL ).

Metrics