Abstract

In this paper, we propose to increase residual carrier frequency offset tolerance based on short perfect reconstruction pulse shaping for coherent optical-orthogonal frequency division multiplexing. The proposed method suppresses the residual carrier frequency offset induced penalty at the receiver, without requiring any additional overhead and exhaustive signal processing. The Q-factor improvement contributed by the proposed method is 1.6 dB and 1.8 dB for time-frequency localization maximization and out-of-band energy minimization pulse shapes, respectively. Finally, the transmission span gain under the influence of residual carrier frequency offset is ~62% with out-of-band energy minimization pulse shape.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Benyuan, D. Peckham, Y. Man, T. Taunay, J. Fini, “Recent progress in transmission fibers for capacity beyond 100-Tbit/s,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), pp. 1–3.
  2. Z. Jian, A. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett. 24(24), 2284–2287 (2012).
    [CrossRef]
  3. C. Simin, Y. Ma, W. Shieh, “Multiband real-time coherent optical OFDM reception up to 110 Gb/s with 600-km transmission,” IEEE Photonics J. 2(3), 454–459 (2010).
    [CrossRef]
  4. X. Zhou, K. Long, R. Li, X. Yang, Z. Zhang, “A simple and efficient frequency offset estimation algorithm for high-speed coherent optical OFDM systems,” Opt. Express 20(7), 7350–7361 (2012).
    [CrossRef] [PubMed]
  5. Y. Chun Ju, L. Xiang, S. Chandrasekhar, K. Yong-Hwan, K. Jong-Hoi, J.-S. Choe, C. Kwang-Seong, and N. Eun-Soo, “An efficient and frequency-offset-tolerant channel estimation and synchronization method for PDM CO-OFDM transmission,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
  6. A. Barbieri, G. Colavolpe, T. Foggi, E. Forestieri, G. Prati, “OFDM versus single-carrier transmission for 100 Gbps optical communication,” J. Lightwave Technol. 28(17), 2537–2551 (2010).
    [CrossRef]
  7. N. Kaneda, Y. Qi, L. Xiang, S. Chandrasekhar, W. Shieh, Y. Chen, “Real-Time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM,” J. Lightwave Technol. 28(4), 494–501 (2010).
    [CrossRef]
  8. C. Simin, Y. Qi, and W. Shieh, “Demonstration of 12.1-Gb/s single-band real-time coherent optical OFDM reception,” in 2010 15th OptoeElectronics and Communications Conference (OECC) (2010), pp. 472–473.
  9. T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
    [CrossRef]
  10. W. Kozek, A. F. Molisch, “On the eigenstructure of underspread WSSUS channels,” in First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications (1997), pp. 325–328.
    [CrossRef]
  11. D. Roque, C. Siclet, “Performances of weighted cyclic prefix OFDM with low-complexity equalization,” IEEE Commun. Lett. 17(3), 439–442 (2013).
    [CrossRef]
  12. W. Kozek, A. F. Molisch, “Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels,” IEEE J. Sel. Areas Comm. 16(8), 1579–1589 (1998).
    [CrossRef]
  13. D. Roque, “Modulations multiporteuses WCP-OFDM: evaluation des performances en environment radiomobile,” PhD Dissertation (Universite de Grenoble, 2012).
  14. J. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2006).
  15. B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag. 28(3), 92–112 (2011).
    [CrossRef]
  16. T. Strohmer, S. Beaver, “Optimal OFDM design for time-frequency dispersive channels,” IEEE Trans. Commun. 51(7), 1111–1122 (2003).
    [CrossRef]
  17. D. Pinchon, P. Siohan, “Closed-form expressions of optimal short PR FMT prototype filters,” in 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (2011), pp. 1–5.
    [CrossRef]
  18. P. Siohan, C. Siclet, N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
    [CrossRef]
  19. S. Randel, S. Adhikari, S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
    [CrossRef]
  20. A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 2007 33rd European Conference and Exhibition of Optical Communication - Post-Deadline Papers (published 2008) (2007), pp. 1–2.
  21. D. Roque, C. Siclet, J. Brossier, P. Siohan, “Weighted cyclic prefix OFDM: PAPR analysis and performances comparison with DFT-precoding,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2012), pp. 1065–1068.
    [CrossRef]
  22. W. Shieh, Q. Yang, Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
    [CrossRef] [PubMed]
  23. Q. Dayou, H. Ming-Fang, Z. Shaoliang, P. Nan Ji, S. Yin, F. Yaman, E. Mateo, W. Ting, Y. Inada, T. Ogata, and Y. Aoki, “Transmission of 115×100G PDM-8QAM-OFDM channels with 4bits/s/Hz spectral efficiency over 10,181km,” in 2011 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), pp. 1–3.

2013 (2)

T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
[CrossRef]

D. Roque, C. Siclet, “Performances of weighted cyclic prefix OFDM with low-complexity equalization,” IEEE Commun. Lett. 17(3), 439–442 (2013).
[CrossRef]

2012 (2)

Z. Jian, A. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett. 24(24), 2284–2287 (2012).
[CrossRef]

X. Zhou, K. Long, R. Li, X. Yang, Z. Zhang, “A simple and efficient frequency offset estimation algorithm for high-speed coherent optical OFDM systems,” Opt. Express 20(7), 7350–7361 (2012).
[CrossRef] [PubMed]

2011 (1)

B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag. 28(3), 92–112 (2011).
[CrossRef]

2010 (4)

A. Barbieri, G. Colavolpe, T. Foggi, E. Forestieri, G. Prati, “OFDM versus single-carrier transmission for 100 Gbps optical communication,” J. Lightwave Technol. 28(17), 2537–2551 (2010).
[CrossRef]

N. Kaneda, Y. Qi, L. Xiang, S. Chandrasekhar, W. Shieh, Y. Chen, “Real-Time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM,” J. Lightwave Technol. 28(4), 494–501 (2010).
[CrossRef]

C. Simin, Y. Ma, W. Shieh, “Multiband real-time coherent optical OFDM reception up to 110 Gb/s with 600-km transmission,” IEEE Photonics J. 2(3), 454–459 (2010).
[CrossRef]

S. Randel, S. Adhikari, S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

2008 (1)

2003 (1)

T. Strohmer, S. Beaver, “Optimal OFDM design for time-frequency dispersive channels,” IEEE Trans. Commun. 51(7), 1111–1122 (2003).
[CrossRef]

2002 (1)

P. Siohan, C. Siclet, N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[CrossRef]

1998 (1)

W. Kozek, A. F. Molisch, “Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels,” IEEE J. Sel. Areas Comm. 16(8), 1579–1589 (1998).
[CrossRef]

Adhikari, S.

S. Randel, S. Adhikari, S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

Barbieri, A.

Beaver, S.

T. Strohmer, S. Beaver, “Optimal OFDM design for time-frequency dispersive channels,” IEEE Trans. Commun. 51(7), 1111–1122 (2003).
[CrossRef]

Benyuan, Z.

Z. Benyuan, D. Peckham, Y. Man, T. Taunay, J. Fini, “Recent progress in transmission fibers for capacity beyond 100-Tbit/s,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), pp. 1–3.

Brossier, J.

D. Roque, C. Siclet, J. Brossier, P. Siohan, “Weighted cyclic prefix OFDM: PAPR analysis and performances comparison with DFT-precoding,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2012), pp. 1065–1068.
[CrossRef]

Chandrasekhar, S.

Chen, Y.

Colavolpe, G.

Ellis, A.

Z. Jian, A. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett. 24(24), 2284–2287 (2012).
[CrossRef]

Farhang-Boroujeny, B.

B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag. 28(3), 92–112 (2011).
[CrossRef]

Fini, J.

Z. Benyuan, D. Peckham, Y. Man, T. Taunay, J. Fini, “Recent progress in transmission fibers for capacity beyond 100-Tbit/s,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), pp. 1–3.

Foggi, T.

Forestieri, E.

Jansen, S. L.

S. Randel, S. Adhikari, S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

Jian, Z.

Z. Jian, A. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett. 24(24), 2284–2287 (2012).
[CrossRef]

Jianjun, Y.

T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
[CrossRef]

Junwen, Z.

T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
[CrossRef]

Kaneda, N.

Kozek, W.

W. Kozek, A. F. Molisch, “Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels,” IEEE J. Sel. Areas Comm. 16(8), 1579–1589 (1998).
[CrossRef]

W. Kozek, A. F. Molisch, “On the eigenstructure of underspread WSSUS channels,” in First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications (1997), pp. 325–328.
[CrossRef]

Lacaille, N.

P. Siohan, C. Siclet, N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[CrossRef]

Li, R.

Li, T.

T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
[CrossRef]

Long, K.

Ma, Y.

C. Simin, Y. Ma, W. Shieh, “Multiband real-time coherent optical OFDM reception up to 110 Gb/s with 600-km transmission,” IEEE Photonics J. 2(3), 454–459 (2010).
[CrossRef]

W. Shieh, Q. Yang, Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
[CrossRef] [PubMed]

Man, Y.

Z. Benyuan, D. Peckham, Y. Man, T. Taunay, J. Fini, “Recent progress in transmission fibers for capacity beyond 100-Tbit/s,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), pp. 1–3.

Molisch, A. F.

W. Kozek, A. F. Molisch, “Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels,” IEEE J. Sel. Areas Comm. 16(8), 1579–1589 (1998).
[CrossRef]

W. Kozek, A. F. Molisch, “On the eigenstructure of underspread WSSUS channels,” in First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications (1997), pp. 325–328.
[CrossRef]

Nan, C.

T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
[CrossRef]

Peckham, D.

Z. Benyuan, D. Peckham, Y. Man, T. Taunay, J. Fini, “Recent progress in transmission fibers for capacity beyond 100-Tbit/s,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), pp. 1–3.

Pinchon, D.

D. Pinchon, P. Siohan, “Closed-form expressions of optimal short PR FMT prototype filters,” in 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (2011), pp. 1–5.
[CrossRef]

Prati, G.

Qi, Y.

Randel, S.

S. Randel, S. Adhikari, S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

Roque, D.

D. Roque, C. Siclet, “Performances of weighted cyclic prefix OFDM with low-complexity equalization,” IEEE Commun. Lett. 17(3), 439–442 (2013).
[CrossRef]

D. Roque, C. Siclet, J. Brossier, P. Siohan, “Weighted cyclic prefix OFDM: PAPR analysis and performances comparison with DFT-precoding,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2012), pp. 1065–1068.
[CrossRef]

Shieh, W.

Siclet, C.

D. Roque, C. Siclet, “Performances of weighted cyclic prefix OFDM with low-complexity equalization,” IEEE Commun. Lett. 17(3), 439–442 (2013).
[CrossRef]

P. Siohan, C. Siclet, N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[CrossRef]

D. Roque, C. Siclet, J. Brossier, P. Siohan, “Weighted cyclic prefix OFDM: PAPR analysis and performances comparison with DFT-precoding,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2012), pp. 1065–1068.
[CrossRef]

Simin, C.

C. Simin, Y. Ma, W. Shieh, “Multiband real-time coherent optical OFDM reception up to 110 Gb/s with 600-km transmission,” IEEE Photonics J. 2(3), 454–459 (2010).
[CrossRef]

Siohan, P.

P. Siohan, C. Siclet, N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[CrossRef]

D. Pinchon, P. Siohan, “Closed-form expressions of optimal short PR FMT prototype filters,” in 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (2011), pp. 1–5.
[CrossRef]

D. Roque, C. Siclet, J. Brossier, P. Siohan, “Weighted cyclic prefix OFDM: PAPR analysis and performances comparison with DFT-precoding,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2012), pp. 1065–1068.
[CrossRef]

Strohmer, T.

T. Strohmer, S. Beaver, “Optimal OFDM design for time-frequency dispersive channels,” IEEE Trans. Commun. 51(7), 1111–1122 (2003).
[CrossRef]

Taunay, T.

Z. Benyuan, D. Peckham, Y. Man, T. Taunay, J. Fini, “Recent progress in transmission fibers for capacity beyond 100-Tbit/s,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), pp. 1–3.

Xiang, L.

Yang, Q.

Yang, X.

Yufeng, S.

T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
[CrossRef]

Zhang, Z.

Zhou, X.

IEEE Commun. Lett. (1)

D. Roque, C. Siclet, “Performances of weighted cyclic prefix OFDM with low-complexity equalization,” IEEE Commun. Lett. 17(3), 439–442 (2013).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

W. Kozek, A. F. Molisch, “Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels,” IEEE J. Sel. Areas Comm. 16(8), 1579–1589 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Li, Y. Jianjun, Z. Junwen, S. Yufeng, C. Nan, “Reduction of intercarrier interference based on window shaping in OFDM RoF systems,” IEEE Photon. Technol. Lett. 25(9), 851–854 (2013).
[CrossRef]

S. Randel, S. Adhikari, S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

Z. Jian, A. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett. 24(24), 2284–2287 (2012).
[CrossRef]

IEEE Photonics J. (1)

C. Simin, Y. Ma, W. Shieh, “Multiband real-time coherent optical OFDM reception up to 110 Gb/s with 600-km transmission,” IEEE Photonics J. 2(3), 454–459 (2010).
[CrossRef]

IEEE Signal Process. Mag. (1)

B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag. 28(3), 92–112 (2011).
[CrossRef]

IEEE Trans. Commun. (1)

T. Strohmer, S. Beaver, “Optimal OFDM design for time-frequency dispersive channels,” IEEE Trans. Commun. 51(7), 1111–1122 (2003).
[CrossRef]

IEEE Trans. Signal Process. (1)

P. Siohan, C. Siclet, N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process. 50(5), 1170–1183 (2002).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Other (10)

C. Simin, Y. Qi, and W. Shieh, “Demonstration of 12.1-Gb/s single-band real-time coherent optical OFDM reception,” in 2010 15th OptoeElectronics and Communications Conference (OECC) (2010), pp. 472–473.

D. Pinchon, P. Siohan, “Closed-form expressions of optimal short PR FMT prototype filters,” in 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) (2011), pp. 1–5.
[CrossRef]

W. Kozek, A. F. Molisch, “On the eigenstructure of underspread WSSUS channels,” in First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications (1997), pp. 325–328.
[CrossRef]

D. Roque, “Modulations multiporteuses WCP-OFDM: evaluation des performances en environment radiomobile,” PhD Dissertation (Universite de Grenoble, 2012).

J. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2006).

Y. Chun Ju, L. Xiang, S. Chandrasekhar, K. Yong-Hwan, K. Jong-Hoi, J.-S. Choe, C. Kwang-Seong, and N. Eun-Soo, “An efficient and frequency-offset-tolerant channel estimation and synchronization method for PDM CO-OFDM transmission,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.

Q. Dayou, H. Ming-Fang, Z. Shaoliang, P. Nan Ji, S. Yin, F. Yaman, E. Mateo, W. Ting, Y. Inada, T. Ogata, and Y. Aoki, “Transmission of 115×100G PDM-8QAM-OFDM channels with 4bits/s/Hz spectral efficiency over 10,181km,” in 2011 37th European Conference and Exhibition on Optical Communication (ECOC) (2011), pp. 1–3.

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 2007 33rd European Conference and Exhibition of Optical Communication - Post-Deadline Papers (published 2008) (2007), pp. 1–2.

D. Roque, C. Siclet, J. Brossier, P. Siohan, “Weighted cyclic prefix OFDM: PAPR analysis and performances comparison with DFT-precoding,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR) (2012), pp. 1065–1068.
[CrossRef]

Z. Benyuan, D. Peckham, Y. Man, T. Taunay, J. Fini, “Recent progress in transmission fibers for capacity beyond 100-Tbit/s,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Rectangular (black), TFL (blue), OBE (red) and RRC (green, α = 1) depiction of (a) impulse response and (b) frequency response. Rectangular has very high energy sidelobes. TFL pulse shape exhibits better localization in time and frequency than OBE. The difference between TFL and OBE is that TFL has higher sidelobe energy and quick energy decay; on the other hand OBE has lower sidelobe energy and slow energy decay. RRC shows good sidelobe energy, however it introduces high inter-symbol interference.

Fig. 2
Fig. 2

System diagram of CO-OFDM with proposed pulse shaping and receiver dual filtering. Acronyms- S/P: serial-to-parallel, IFFT: inverse fast Fourier transform, CP: cyclic prefix, P/S: parallel-to-serial, TS: training symbol, DAC: digital-to-analogue converter, I: in-phase, Q: quadrature, OLO: optical local oscillator, ADC: analogue-to-digital converter, and FFT: fast Fourier transform.

Fig. 3
Fig. 3

Optical launch power investigation with no CFO for rectangular pulse shape, and 2 MHz residual CFO across rectangular, TFL, OBE and RRC. α is 0.1, 0.2, and 1 for RRC pulse shape. The transmission distance is 1600 km.

Fig. 4
Fig. 4

Impact of utilizing rectangular, TFL and OBE pulse shapes under varying residual CFOs at transmission distance of 1600 km.

Fig. 5
Fig. 5

Rectangular, TFL and OBE pulse shapes behavior under continuous broadening of combined linewidth with no residual CFO, and at transmission distance of 1600 km.

Fig. 6
Fig. 6

Transmission investigation of Rectangular, TFL and OBE pulse shapes with 2 MHz residual CFO.

Tables (1)

Tables Icon

Table 1 Back-to-back Q-factor of CO-OFDM with various pulse shapes at 2 MHz residual CFO

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

s[k]= (m,n) c m,n γ m,n [k], kZ .
γ m,n [k]= 1 M γ[knN] e j2π m M k , γ[k] 2 Z.
γ m,n [k]= 1 M γ [knN] e j2π m M k , γ [k] 2 Z.
c p,q = γ p,q ,s = c p,q γ p,q , γ p,q + (m,np,q) c m,n γ p,q , γ m,n
γ[k] γ [k]+γ[k+M] γ [k+M]=1, for 0kNM1, γ[k] γ [k]=1, for NMkM1.
r[k]=( H ˜ s)[k]+z[k]=s[k] e j2πϕk +z[k]
c p,q = γ p,q ,r = kZ s[k] e j2πϕk γ p,q [k]+ kZ z[k] γ p,q [k] = 1 M kZ (m,n) c m,n γ[knN] γ [kqN] e j2π[(mp)/M+ϕ]k + z p,q .
c p = 1 M m=0 M1 c m kZ γ[k] γ [k] e j2π[(mp)/M+ϕ]k A m,p ϕ + z p = 1 M c p A p,p ϕ s p + 1 M m=1:mp M1 c m A m,p ϕ i p + z p
γ RECT [k]={ 1, if 0kN1, 0, otherwise, γ RECT [k]={ 1, if N-MkN1, 0, otherwise.
γ TFL [k]={ sin( (2k+1)π 4Δ ) if 0kΔ1, 1 if ΔkM1, sin( (2(Δk)+1)π 4Δ ) if MkN1, 0 otherwise.
γ OBE [k]={ cos( a ˜ + b ˜ (2k+1) 2Δ ) if 0kΔ1, 1 if ΔkM1, cos( a ˜ + b ˜ (2k+1) 2Δ ) if MkN1, 0 otherwise.

Metrics