Abstract

The gain-lever effect enhances the modulation efficiency of a semiconductor laser when compared to modulating the entire laser. This technique is investigated in a long-cavity multi-section quantum-dot laser where the length of the modulation section is varied to achieve 14:2, 15:1 and 0:16 gain-to-modulation section ratios. In this work, the gain-levered modulation configuration resulted in an increase in modulation efficiency by as much as 16 dB. This investigation also found that the 3-dB modulation bandwidth and modulation efficiency are dependent on the modulation section length of the device, indicating the existence of an optimal gain-to-modulation section ratio. The long cavity length of the multi-section laser yielded a distinctive case where characteristics of both the gain-lever effect and spatial effects are observed in the modulation response. Here, spatial effects within the cavity dominated the small-signal modulation response close to and above the cavity’s free-spectral range frequency, whereas the gain-lever effect influenced the modulation response throughout the entirety of the response.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, M. A. Newkirk, T. R. Chen, “The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54(25), 2506–2508 (1989).
    [CrossRef]
  2. Y. Li, N. A. Naderi, V. Kovanis, L. F. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2(3), 321–329 (2010).
    [CrossRef]
  3. T. B. Simpson, J. M. Liu, A. Gavrielides, “Bandwidth enhancement and broad-band noise-reduction in injection-locked semiconductor-lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
    [CrossRef]
  4. A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [CrossRef]
  5. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
    [CrossRef]
  6. F. Grillot, C. Wang, N. A. Naderi, J. Evan, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
    [CrossRef]
  7. M. Asada, Y. Mitamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
    [CrossRef]
  8. L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
    [CrossRef]
  9. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
  10. C. R. Doerr, “Direct modulation of long-cavity semiconductor lasers,” J. Lightwave Technol. 14(9), 2052–2061 (1996).
  11. N. G. Usechak, M. Grupen, N. Naderi, Y. Li, L. F. Lester, and V. Kovanis, “Modulation effects in multi-section semiconductor lasers,” Proc. SPIE 7933, 793311 (2011).
  12. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 1995), pp. 204–207.
  13. Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).
  14. N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
    [CrossRef]
  15. L. A. Glasser, “A linearized theory for the diode laser in an external cavity,” IEEE J. Quantum Electron. 16(5), 525–531 (1980).
    [CrossRef]

2013

F. Grillot, C. Wang, N. A. Naderi, J. Evan, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[CrossRef]

2010

Y. Li, N. A. Naderi, V. Kovanis, L. F. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2(3), 321–329 (2010).
[CrossRef]

2009

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

2007

Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

2003

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

1996

C. R. Doerr, “Direct modulation of long-cavity semiconductor lasers,” J. Lightwave Technol. 14(9), 2052–2061 (1996).

1995

T. B. Simpson, J. M. Liu, A. Gavrielides, “Bandwidth enhancement and broad-band noise-reduction in injection-locked semiconductor-lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

1991

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

1989

K. J. Vahala, M. A. Newkirk, T. R. Chen, “The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54(25), 2506–2508 (1989).
[CrossRef]

1986

M. Asada, Y. Mitamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

1980

L. A. Glasser, “A linearized theory for the diode laser in an external cavity,” IEEE J. Quantum Electron. 16(5), 525–531 (1980).
[CrossRef]

Asada, M.

M. Asada, Y. Mitamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Bandelow, U.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

Chen, T. R.

K. J. Vahala, M. A. Newkirk, T. R. Chen, “The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54(25), 2506–2508 (1989).
[CrossRef]

Doerr, C. R.

C. R. Doerr, “Direct modulation of long-cavity semiconductor lasers,” J. Lightwave Technol. 14(9), 2052–2061 (1996).

Dziak, C.

Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).

Eastman, L. F.

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

Evan, J.

F. Grillot, C. Wang, N. A. Naderi, J. Evan, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[CrossRef]

Foreman, B. A.

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

Gavrielides, A.

T. B. Simpson, J. M. Liu, A. Gavrielides, “Bandwidth enhancement and broad-band noise-reduction in injection-locked semiconductor-lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

Glasser, L. A.

L. A. Glasser, “A linearized theory for the diode laser in an external cavity,” IEEE J. Quantum Electron. 16(5), 525–531 (1980).
[CrossRef]

Glitzky, A.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

Grillot, F.

F. Grillot, C. Wang, N. A. Naderi, J. Evan, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Kovanis, V.

Y. Li, N. A. Naderi, V. Kovanis, L. F. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2(3), 321–329 (2010).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

Kreissl, J.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

Lester, L. F.

Y. Li, N. A. Naderi, V. Kovanis, L. F. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2(3), 321–329 (2010).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

Li, Y.

Y. Li, N. A. Naderi, V. Kovanis, L. F. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2(3), 321–329 (2010).
[CrossRef]

Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).

Liu, J. M.

T. B. Simpson, J. M. Liu, A. Gavrielides, “Bandwidth enhancement and broad-band noise-reduction in injection-locked semiconductor-lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

Mitamoto, Y.

M. Asada, Y. Mitamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

Naderi, N.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

Naderi, N. A.

F. Grillot, C. Wang, N. A. Naderi, J. Evan, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[CrossRef]

Y. Li, N. A. Naderi, V. Kovanis, L. F. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2(3), 321–329 (2010).
[CrossRef]

Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).

Newkirk, M. A.

K. J. Vahala, M. A. Newkirk, T. R. Chen, “The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54(25), 2506–2508 (1989).
[CrossRef]

Offsey, S. D.

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

Penty, R. V.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).

Pochet, M.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

Radziunas, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

Rae, A. R.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).

Rehbein, W.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

Ridley, B. K.

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

Schaff, W. J.

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

Simpson, T. B.

T. B. Simpson, J. M. Liu, A. Gavrielides, “Bandwidth enhancement and broad-band noise-reduction in injection-locked semiconductor-lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

Suematsu, Y.

M. Asada, Y. Mitamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

Terry, N.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

Thompson, M. G.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).

Troppenz, U.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

Vahala, K. J.

K. J. Vahala, M. A. Newkirk, T. R. Chen, “The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54(25), 2506–2508 (1989).
[CrossRef]

Wang, C.

F. Grillot, C. Wang, N. A. Naderi, J. Evan, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[CrossRef]

White, I. H.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).

Wolfrum, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

Xia, M.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).

Xin, Y.-C.

Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).

Appl. Phys. Lett.

K. J. Vahala, M. A. Newkirk, T. R. Chen, “The optical gain lever: A novel gain mechanism in the direct modulation of quantum well semiconductor lasers,” Appl. Phys. Lett. 54(25), 2506–2508 (1989).
[CrossRef]

L. F. Lester, S. D. Offsey, B. K. Ridley, W. J. Schaff, B. A. Foreman, L. F. Eastman, “Comparison of the theoretical and experimental differential gain in strained layer InGaAs/GaAs quantum well lasers,” Appl. Phys. Lett. 59(10), 1162–1164 (1991).
[CrossRef]

IEEE J. Quantum Electron.

A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[CrossRef]

M. Asada, Y. Mitamoto, Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[CrossRef]

L. A. Glasser, “A linearized theory for the diode laser in an external cavity,” IEEE J. Quantum Electron. 16(5), 525–531 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[CrossRef]

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[CrossRef]

F. Grillot, C. Wang, N. A. Naderi, J. Evan, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[CrossRef]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).

IEEE Photon. J.

Y. Li, N. A. Naderi, V. Kovanis, L. F. Lester, “Enhancing the 3-dB bandwidth via the gain-lever effect in quantum-dot lasers,” IEEE Photon. J. 2(3), 321–329 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

T. B. Simpson, J. M. Liu, A. Gavrielides, “Bandwidth enhancement and broad-band noise-reduction in injection-locked semiconductor-lasers,” IEEE Photon. Technol. Lett. 7(7), 709–711 (1995).
[CrossRef]

J. Lightwave Technol.

C. R. Doerr, “Direct modulation of long-cavity semiconductor lasers,” J. Lightwave Technol. 14(9), 2052–2061 (1996).

Proc. SPIE

Y. Li, N. A. Naderi, Y.-C. Xin, C. Dziak, L. F. Lester, “Multi-section gain-lever quantum dot lasers,” Proc. SPIE 6468, 646819 (2007).

Other

N. G. Usechak, M. Grupen, N. Naderi, Y. Li, L. F. Lester, and V. Kovanis, “Modulation effects in multi-section semiconductor lasers,” Proc. SPIE 7933, 793311 (2011).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 1995), pp. 204–207.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout of the multi-section laser. As shown, one 0.5-mm section of the laser is modulated using the ground-signal microwave probe. The remaining 15 sections are DC biased to yield a 15:1 gain-to-modulation section ratio.

Fig. 2
Fig. 2

Experimental setup to measure the modulation transfer response of the multi-section laser. The bias-T, high-speed photodetector, and microwave cables had a bandwidth of at least 26.5 GHz.

Fig. 3
Fig. 3

Optical (left) and scanning electron microscope (SEM) (right) images of the multi-section laser. The SEM image highlights the width of the gap between the ohmic contacts.

Fig. 4
Fig. 4

The gain-lever effect on the 3-dB modulation (S21) bandwidth. A bias current of 200 mA was applied to the single-section case. For the 14:2 and 15:1 cases, the modulation section was biased at the threshold current level and the gain section was biased to yield an output power equal to the single-section case.

Fig. 5
Fig. 5

The gain-lever effect on the 3-dB modulation (S21) bandwidth. A bias current of 100 mA was applied to the single-section case. For the 14:2 and 15:1 cases, the modulation section was biased at the threshold current level and the gain section was biased to yield an output power equal to the single-section case.

Fig. 6
Fig. 6

Combined gain-lever effect and spatial effects extending the 3-dB modulation (S21) bandwidth beyond the laser’s free-spectral range. A 14:2 gain-to-modulation ratio was implemented, where the modulation section was biased at the threshold level and the current applied to the gain section was adjusted to yield an output power equivalent to the 300-mA single-section case. The 300mA single-section case is appended for comparison purposes.

Fig. 7
Fig. 7

15:1 gain-to-modulation section architecture; varied asymmetric bias conditions. The output power was held constant at 3.2 mW for all bias configurations. A 16-dB improvement to the modulation efficiency is reported.

Fig. 8
Fig. 8

Single-section modulation response at 100-mA bias current. Prominent resonance peaks are observed at the fundamental and higher order harmonics of the device’s free-spectral range. The fit using the conventional response (blue) lacks the enhanced resonance observed experimentally (ωr = 1.15 GHz, γfr = 7.53 GHz)

Tables (1)

Tables Icon

Table 1 Current Density Ratio vs. Modulation Enhancement in the Gain Lever Effect

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| H R | 2 = ω r 4 ( ( ω r 2 ω) 2 + γ fr 2 ω 2 )

Metrics