Abstract

The dependence of the near-field signal on the dielectric function of a specific material proposes scattering-type near-field optical microscopy (s-SNOM) as a viable tool for material characterization studies. Our experiment shows that specific material identification by s-SNOM is not a straightforward task as parameters involved in the detection scheme can also influence material contrast measurements. More precisely, we demonstrate that s-SNOM contrast in a pseudo-heterodyne detection configuration depends on the oscillation amplitude of the reference mirror and that for reliable measurements of the contrast between different materials this aspect needs to be taken into consideration.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
    [Crossref]
  2. Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
    [Crossref] [PubMed]
  3. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
    [Crossref] [PubMed]
  4. J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012).
    [Crossref]
  5. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
    [Crossref] [PubMed]
  6. R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(1), 77–83 (2001).
    [Crossref] [PubMed]
  7. R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
    [Crossref] [PubMed]
  8. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
    [Crossref]
  9. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
    [Crossref]
  10. R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B 75(19), 195410 (2007).
    [Crossref]
  11. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23(5), 823–833 (2006).
    [Crossref]
  12. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
    [Crossref]
  13. M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
    [Crossref] [PubMed]
  14. J. E. Hall, G. P. Wiederrecht, S. K. Gray, S. H. Chang, S. Jeon, J. A. Rogers, R. Bachelot, and P. Royer, “Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells,” Opt. Express 15(7), 4098–4105 (2007).
    [Crossref] [PubMed]
  15. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
    [Crossref]
  16. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
    [Crossref]
  17. Z. Nuño, B. Hessler, J. Ochoa, Y. S. Shon, C. Bonney, and Y. Abate, “Nanoscale subsurface- and material-specific identification of single nanoparticles,” Opt. Express 19(21), 20865–20875 (2011).
    [Crossref] [PubMed]
  18. M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
    [Crossref]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. G. A. Stanciu, C. Stoichita, R. Hristu, S. G. Stanciu, and D. E. Tranca, “Metallic samples investigated by using a scattering near-field optical microscope,” in Proceedings of the 14 International Conference on the Transparent Optical Networks (ICTON), M. Jaworski, M. Marciniak, eds. (IEEE Comput., New York, 2012), p. 3.
    [Crossref]
  21. C. C. Liao and Y. L. Lo, “Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy,” Prog. Electromagn. Res. 112, 415–440 (2011).
  22. B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999).
    [Crossref]
  23. P. de Groot, “Design of error-compensating algorithms for sinusoidal phase shifting interferometry,” Appl. Opt. 48(35), 6788–6796 (2009).
    [Crossref] [PubMed]
  24. L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Opt. Commun. 282(11), 2212–2216 (2009).
    [Crossref]
  25. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
    [Crossref]
  26. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7(10), 2032–2040 (1990).
    [Crossref] [PubMed]
  27. R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
    [Crossref]

2012 (2)

J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012).
[Crossref]

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

2011 (2)

Z. Nuño, B. Hessler, J. Ochoa, Y. S. Shon, C. Bonney, and Y. Abate, “Nanoscale subsurface- and material-specific identification of single nanoparticles,” Opt. Express 19(21), 20865–20875 (2011).
[Crossref] [PubMed]

C. C. Liao and Y. L. Lo, “Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy,” Prog. Electromagn. Res. 112, 415–440 (2011).

2009 (3)

P. de Groot, “Design of error-compensating algorithms for sinusoidal phase shifting interferometry,” Appl. Opt. 48(35), 6788–6796 (2009).
[Crossref] [PubMed]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Opt. Commun. 282(11), 2212–2216 (2009).
[Crossref]

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

2007 (3)

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[Crossref]

J. E. Hall, G. P. Wiederrecht, S. K. Gray, S. H. Chang, S. Jeon, J. A. Rogers, R. Bachelot, and P. Royer, “Heterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells,” Opt. Express 15(7), 4098–4105 (2007).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B 75(19), 195410 (2007).
[Crossref]

2006 (4)

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23(5), 823–833 (2006).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[Crossref] [PubMed]

2004 (1)

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
[Crossref] [PubMed]

2003 (2)

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

2001 (1)

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(1), 77–83 (2001).
[Crossref] [PubMed]

2000 (2)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

1999 (3)

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999).
[Crossref]

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

1993 (1)

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[Crossref]

1990 (1)

Abate, Y.

Aigouy, L.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Aizpurua, J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Anczykowski, B.

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999).
[Crossref]

Atkin, J. M.

J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012).
[Crossref]

Bachelot, R.

Bek, A.

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Bergmann, K.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Opt. Commun. 282(11), 2212–2216 (2009).
[Crossref]

Berweger, S.

J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012).
[Crossref]

Blaize, S.

Boccara, A. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Bonney, C.

Bouhelier, A.

Castro, M. E.

Chang, S.

Chang, S. H.

Crozier, K.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

de Groot, P.

Desmarest, C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Dorfmüller, J.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Esslinger, M.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B 75(19), 195410 (2007).
[Crossref]

Fuchs, H.

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999).
[Crossref]

Gadenne, P.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

García, R.

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

García-Etxarri, A.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Gomez, L.

Gotsmann, B.

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999).
[Crossref]

Gray, S. K.

Grésillon, S.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Hall, J. E.

Hessler, B.

Hillenbrand, R.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(1), 77–83 (2001).
[Crossref] [PubMed]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

Hua, F.

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Huber, A. J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[Crossref]

Jeon, S.

Jones, A. C.

J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012).
[Crossref]

Kazantsev, D.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[Crossref]

Keilmann, F.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[Crossref]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(1), 77–83 (2001).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

Kern, K.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B 75(19), 195410 (2007).
[Crossref]

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Khunsin, W.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Kim, Z. H.

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[Crossref] [PubMed]

Knoll, B.

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(1), 77–83 (2001).
[Crossref] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[Crossref]

Leone, S. R.

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[Crossref] [PubMed]

Lerondel, G.

Liao, C. C.

C. C. Liao and Y. L. Lo, “Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy,” Prog. Electromagn. Res. 112, 415–440 (2011).

Lienau, C.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

Lo, Y. L.

C. C. Liao and Y. L. Lo, “Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy,” Prog. Electromagn. Res. 112, 415–440 (2011).

Nuño, Z.

Ocelic, N.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Ochoa, J.

Peli, E.

Quelin, X.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Raschke, M. B.

J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012).
[Crossref]

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

Rivoal, J. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Rogers, J. A.

Royer, P.

San Paulo, A.

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

Sarychev, A.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Schnell, M.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Seidel, C.

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999).
[Crossref]

Shalaev, V.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Shon, Y. S.

Shore, B. W.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Opt. Commun. 282(11), 2212–2216 (2009).
[Crossref]

Shubin, V.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Stefanon, I.

Taubner, T.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

Toledo-Crow, R.

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[Crossref]

Vaez-Iravani, M.

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[Crossref]

Vogelgesang, R.

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B 75(19), 195410 (2007).
[Crossref]

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

Wiederrecht, G. P.

Wittborn, J.

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[Crossref]

Yatsenko, L. P.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Opt. Commun. 282(11), 2212–2216 (2009).
[Crossref]

Adv. Mater. (1)

A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007).
[Crossref]

Adv. Phys. (1)

J. M. Atkin, S. Berweger, A. C. Jones, and M. B. Raschke, “Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids,” Adv. Phys. 61(6), 745–842 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: tip-sample coupling in elastic light scattering,” Appl. Phys. Lett. 83(24), 5089–5091 (2003).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

M. Vaez-Iravani and R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63(2), 138–140 (1993).
[Crossref]

J. Microsc. (2)

R. Hillenbrand, B. Knoll, and F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202(1), 77–83 (2001).
[Crossref] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Opt. Commun. (2)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182(4-6), 321–328 (2000).
[Crossref]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Opt. Commun. 282(11), 2212–2216 (2009).
[Crossref]

Opt. Express (2)

Phys. Rev. B (3)

R. Esteban, R. Vogelgesang, and K. Kern, “Tip-substrate interaction in optical near-field microscopy,” Phys. Rev. B 75(19), 195410 (2007).
[Crossref]

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM,” Phys. Rev. B 60(15), 11051–11061 (1999).
[Crossref]

Phys. Rev. Lett. (2)

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. Shubin, A. Sarychev, and V. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

Prog. Electromagn. Res. (1)

C. C. Liao and Y. L. Lo, “Phenomenological model combining dipole-interaction signal and background effects for analyzing modulated detection in apertureless scanning near-field optical microscopy,” Prog. Electromagn. Res. 112, 415–440 (2011).

Rev. Sci. Instrum. (2)

A. Bek, R. Vogelgesang, and K. Kern, “Apertureless scanning near field optical microscope with sub-10 nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[Crossref]

M. Esslinger, J. Dorfmüller, W. Khunsin, R. Vogelgesang, and K. Kern, “Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy,” Rev. Sci. Instrum. 83(3), 033704 (2012).
[Crossref] [PubMed]

Ultramicroscopy (1)

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

G. A. Stanciu, C. Stoichita, R. Hristu, S. G. Stanciu, and D. E. Tranca, “Metallic samples investigated by using a scattering near-field optical microscope,” in Proceedings of the 14 International Conference on the Transparent Optical Networks (ICTON), M. Jaworski, M. Marciniak, eds. (IEEE Comput., New York, 2012), p. 3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Normalized near-field signal magnitude dependence on the oscillation amplitude of the reference mirror: a) frequency fo + M; b) frequency fo + 2M. Continuous curves: Jacobi–Anger expansion coefficients; circled curves: Fast Fourier Transform; Black dots: experimental determinations.

Fig. 2
Fig. 2

Image contrast vs. oscillation amplitude of the reference mirror for different tip-sample minimal separations, d: a) frequency fo + M; b) frequency fo + 2M.

Fig. 3
Fig. 3

Image contrast vs. oscillation amplitude of the reference mirror for random 0.1 – 10 nm tip-sample separations, d: a) frequency fo + M; b) frequency fo + 2M.

Fig. 4
Fig. 4

5x5 µm rectangular domain of a thin Platinum film deposited on a Sapphire substrate. (a) Topographic image; (b) Experimental pseudo-heterodyne s-SNOM image obtained at fo + M harmonic frequency.

Fig. 5
Fig. 5

5x5 µm thin rectangular domains of Platinum deposited on a Sapphire substrate. (a) Topographic image; (b) – (d) Simulated pseudo-heterodyne s-SNOM image obtained on fo + M with respectively A1 = 365 nm, A2 = 385 nm, A3 = 405 nm; (e) – (g) Experimental pseudo-heterodyne s-SNOM image obtained on fo + M with respectively A1 = 365 nm, A2 = 385 nm, A3 = 405 nm.

Fig. 6
Fig. 6

5x5 µm thin rectangular domains of Platinum deposited on a Sapphire substrate. (a) Topographic image; (b) – (d) Simulated pseudo-heterodyne s-SNOM image obtained on fo + 2M with respectively A1 = 480 nm, A2 = 500 nm, A3 = 520 nm; (e) – (g) Experimental pseudo-heterodyne s-SNOM image obtained on fo + 2M with respectively A1 = 480 nm, A2 = 500 nm, A3 = 520 nm.

Tables (2)

Tables Icon

Table 1 Image contrast for simulated and experimental images, in the case of three different mirror oscillation amplitudes; detection on f + M frequency.

Tables Icon

Table 2 Image contrast for simulated and experimental images, in the case of three different mirror oscillation amplitudes; detection on f + 2M.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E nf =Ct α eff E i .
α eff =α β( ε s )+1 1 αβ( ε s ) 16 (a+ z ˜ ) 3 ,
E ref = E i exp[ i 2π λ Asin( 2πMt ) ].
E bkg = E i [ 1+ 1 2 sin( 2π f o t ) ].
I= | E ref | 2 + | E nf | 2 +2| E ref || E nf |cos( ϕ ref ϕ nf ),
Icos( ϕ ref ϕ nf ).
Iexp( i ϕ ref )=exp( i 2π λ Asin( 2πMt ) ).
I= m k m exp( i2πmMt ) ,
with k m = J m ( 2π λ A ).
Contrast( A )= | k m ( A ) | Platinum | k m ( A ) | Sapphire | k m ( A ) | Platinum +| k m ( A ) | Sapphire 100%
I= | E ref | 2 + | E nf | 2 + | E bkg | 2 +2| E ref || E nf |cos( ϕ ref ϕ nf )+ +2| E ref || E bkg |cos( ϕ ref ϕ bkg )+2| E nf || E bkg |cos( ϕ nf ϕ bkg ).

Metrics