Abstract

We demonstrated a novel fiber in-line Mach-Zehnder interferometer (MZI) with a large fringe visibility of up to 17 dB, which was fabricated by misaligned splicing a short section of thin core fiber between two sections of standard single-mode fiber. Such a MZI could be used to realize simultaneous measurement of tensile strain and temperature. Tensile strain was measured with an ultrahigh sensitivity of −0.023 dB/μɛ via the intensity modulation of interference fringes, and temperature was measured with a high sensitivity of 51 pm/°C via the wavelength modulation of interference fringe. That is, the MZI-based sensor overcomes the cross-sensitivity problem between tensile strain and temperature by means of different demodulation methods. Moreover, this proposed sensor exhibits the advantages of low-cost, extremely simple structure, compact size (only about 10 mm), and good repeatability.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
    [CrossRef] [PubMed]
  2. Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
    [CrossRef]
  3. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [CrossRef] [PubMed]
  4. Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
    [CrossRef] [PubMed]
  5. Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
    [CrossRef]
  6. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
    [CrossRef]
  7. Y. H. Li, L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [CrossRef] [PubMed]
  8. C. R. Liao, D. N. Wang, Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [CrossRef] [PubMed]
  9. W. Zhou, W. C. Wong, C. C. Chan, L. Y. Shao, X. Y. Dong, “Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer,” Appl. Opt. 50(19), 3087–3092 (2011).
    [CrossRef] [PubMed]
  10. B. Dong, D.-P. Zhou, L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28(7), 1011–1015 (2010).
    [CrossRef]
  11. Y.-G. Han, “Temperature-insensitive strain measurement using a birefringent interferometer based on a polarization-maintaining photonic crystal fiber,” Appl. Phys. B 95(2), 383–387 (2009).
    [CrossRef]
  12. L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [CrossRef] [PubMed]
  13. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, I. R. Matias, “Mode transition in complex refractive index coated single-mode-multimode-single-mode structure,” Opt. Express 21(10), 12668–12682 (2013).
    [CrossRef] [PubMed]
  14. H. T. Wang, S. L. Pu, N. Wang, S. H. Dong, J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
    [CrossRef] [PubMed]
  15. P. Lu, Q. Chen, “Asymmetrical Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Axial Strain and Temperature,” IEEE Photonics J. 2(6), 942–953 (2010).
    [CrossRef]
  16. Z. Tian, S.-H. Yam, H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
    [CrossRef]
  17. P. Lu, L. Men, K. Sooley, Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [CrossRef]
  18. D. Wu, T. Zhu, K. S. Chiang, M. Deng, “All Single-Mode Fiber Mach–Zehnder Interferometer Based on Two Peanut-Shape Structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
    [CrossRef]
  19. Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
    [CrossRef]
  20. D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, J. W. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47(10), 1668–1672 (2008).
    [CrossRef] [PubMed]
  21. Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
    [CrossRef]
  22. W. Qian, C.-L. Zhao, X. Dong, W. Jin, “Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror,” Opt. Commun. 283(24), 5250–5254 (2010).
    [CrossRef]
  23. M.-S. Yoon, S. Park, Y.-G. Han, “Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
    [CrossRef]
  24. C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, “Fiber In-Line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
    [CrossRef]

2013 (4)

2012 (3)

2011 (2)

2010 (4)

W. Qian, C.-L. Zhao, X. Dong, W. Jin, “Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror,” Opt. Commun. 283(24), 5250–5254 (2010).
[CrossRef]

B. Dong, D.-P. Zhou, L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28(7), 1011–1015 (2010).
[CrossRef]

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[CrossRef]

P. Lu, Q. Chen, “Asymmetrical Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Axial Strain and Temperature,” IEEE Photonics J. 2(6), 942–953 (2010).
[CrossRef]

2009 (2)

P. Lu, L. Men, K. Sooley, Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Y.-G. Han, “Temperature-insensitive strain measurement using a birefringent interferometer based on a polarization-maintaining photonic crystal fiber,” Appl. Phys. B 95(2), 383–387 (2009).
[CrossRef]

2008 (4)

2004 (2)

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[CrossRef]

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

2003 (1)

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

2002 (1)

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

2001 (1)

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Arregui, F. J.

Benning, I.

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Bennion, I.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Chan, C. C.

Chen, J. P.

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

Chen, Q.

P. Lu, Q. Chen, “Asymmetrical Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Axial Strain and Temperature,” IEEE Photonics J. 2(6), 942–953 (2010).
[CrossRef]

P. Lu, L. Men, K. Sooley, Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Chen, X.

Chiang, K. S.

Chung, Y.

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
[CrossRef] [PubMed]

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

Corres, J. M.

Del Villar, I.

Deng, M.

Dong, B.

Dong, S. H.

Dong, X.

W. Qian, C.-L. Zhao, X. Dong, W. Jin, “Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror,” Opt. Commun. 283(24), 5250–5254 (2010).
[CrossRef]

Dong, X. Y.

Du, C.

Femando, G. F.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Han, Y.-G.

M.-S. Yoon, S. Park, Y.-G. Han, “Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
[CrossRef]

Y.-G. Han, “Temperature-insensitive strain measurement using a birefringent interferometer based on a polarization-maintaining photonic crystal fiber,” Appl. Phys. B 95(2), 383–387 (2009).
[CrossRef]

Heiblum, M.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

Hong, J. X.

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

Huang, J.

Huang, Q.

Huang, S. L.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Hwang, D.

Ji, Y.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

Jiang, L.

Jin, W.

W. Qian, C.-L. Zhao, X. Dong, W. Jin, “Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror,” Opt. Commun. 283(24), 5250–5254 (2010).
[CrossRef]

Li, B.

Li, X. W.

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

Li, Y. H.

Lian, D. K.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Liao, C. R.

C. R. Liao, D. N. Wang, Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[CrossRef] [PubMed]

C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, “Fiber In-Line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[CrossRef]

Lit, J. W.

Liu, T. Y.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Liu, W.-K.

Liu, Y.

Loock, H.-P.

Z. Tian, S.-H. Yam, H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Lu, P.

P. Lu, Q. Chen, “Asymmetrical Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Axial Strain and Temperature,” IEEE Photonics J. 2(6), 942–953 (2010).
[CrossRef]

P. Lu, L. Men, K. Sooley, Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Mahalu, D.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

Matias, I. R.

Men, L.

P. Lu, L. Men, K. Sooley, Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Moon, D. S.

Moon, S.

Nguyen, L. V.

Ou, Z.

Park, S.

Pu, S. L.

Qian, W.

W. Qian, C.-L. Zhao, X. Dong, W. Jin, “Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror,” Opt. Commun. 283(24), 5250–5254 (2010).
[CrossRef]

Ran, Z. L.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Rao, Y. J.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[CrossRef]

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Shao, L. Y.

Shtrikman, H.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

Socorro, A. B.

Sooley, K.

P. Lu, L. Men, K. Sooley, Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Sprinzak, D.

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

Tian, Z.

Z. Tian, S.-H. Yam, H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Tong, L. M.

Wang, D. N.

C. R. Liao, D. N. Wang, Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[CrossRef] [PubMed]

C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, “Fiber In-Line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[CrossRef]

Wang, H. T.

Wang, J.

Wang, M.

Wang, N.

Wang, S.

Wang, Y.

C. R. Liao, D. N. Wang, Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[CrossRef] [PubMed]

C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, “Fiber In-Line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[CrossRef]

Wang, Y. P.

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[CrossRef]

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Wei, H.

Wei, L.

Wong, W. C.

Wu, D.

Yam, S.-H.

Z. Tian, S.-H. Yam, H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

Yan, P.

Yang, J.

Yang, M. W.

C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, “Fiber In-Line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[CrossRef]

Ye, A. L.

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

Yoon, M.-S.

Yu, Y.

Yuan, S. F.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Zeng, X. K.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[CrossRef]

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Zhang, L.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Zhang, X. H.

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

Zhao, C.-L.

W. Qian, C.-L. Zhao, X. Dong, W. Jin, “Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror,” Opt. Commun. 283(24), 5250–5254 (2010).
[CrossRef]

Zhou, D.-P.

Zhou, J. H.

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

Zhou, W.

Zhu, T.

D. Wu, T. Zhu, K. S. Chiang, M. Deng, “All Single-Mode Fiber Mach–Zehnder Interferometer Based on Two Peanut-Shape Structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[CrossRef]

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

Zhu, Y.

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

Y.-G. Han, “Temperature-insensitive strain measurement using a birefringent interferometer based on a polarization-maintaining photonic crystal fiber,” Appl. Phys. B 95(2), 383–387 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

Y. P. Wang, J. P. Chen, X. W. Li, J. X. Hong, X. H. Zhang, J. H. Zhou, A. L. Ye, “Measuring electro-optic coefficients of poled polymers using fiber-optic Mach-Zehnder Interferometer,” Appl. Phys. Lett. 85(21), 5102–5103 (2004).
[CrossRef]

P. Lu, L. Men, K. Sooley, Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Chin. Phys. Lett. (1)

Y. J. Rao, X. K. Zeng, Y. P. Wang, T. Zhu, Z. L. Ran, L. Zhang, I. Benning, “Temperature-strain discrimination using a wavelength-division-multiplexed chirped in-fiber-Bragg-Grating/extrinsic Fabry-Perot sensor system,” Chin. Phys. Lett. 18(5), 643–645 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Tian, S.-H. Yam, H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20(16), 1387–1389 (2008).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, “Fiber In-Line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[CrossRef]

IEEE Photonics J. (1)

P. Lu, Q. Chen, “Asymmetrical Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Axial Strain and Temperature,” IEEE Photonics J. 2(6), 942–953 (2010).
[CrossRef]

J. Appl. Phys. (1)

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, “An electronic Mach-Zehnder interferometer,” Nature 422(6930), 415–418 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

W. Qian, C.-L. Zhao, X. Dong, W. Jin, “Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror,” Opt. Commun. 283(24), 5250–5254 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (2)

Y. J. Rao, S. F. Yuan, X. K. Zeng, D. K. Lian, Y. Zhu, Y. P. Wang, S. L. Huang, T. Y. Liu, G. F. Femando, L. Zhang, I. Bennion, “Simultaneous strain and temperature measurement of advanced 3-D braided composite materials using an improved EFPI/FBG system,” Opt. Lasers Eng. 38(6), 557–566 (2002).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the proposed fiber in-line MZI and the propagating light distribution in this structure.

Fig. 2
Fig. 2

(a) Fiber in-line MZI structure; Optical microscope image of (b) the lead-in spliced joints with a core offset and (c) the lead-out spliced joints without a core offset.

Fig. 3
Fig. 3

Interference fringe pattern of the achieved MZI with a core offset of about 10 μm.

Fig. 4
Fig. 4

(a) Interference fringe patterns of the MZI with different strain; (b) Dip wavelength and intensity versus tensile strain.

Fig. 5
Fig. 5

(a) Interference fringe of the MZI with different temperature; (b) Dip wavelength and dip intensity versus temperature.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I out = ( E 0 γβ) 2 + [ E 0 (1γ)] 2 +2 E 0 2 γ(1γ)βcosφ
V=2β ( β 2 γ 1γ + 1γ γ ) 1
φ= 2πΔ n eff L λ
λ dip = 2Δ n eff L 2m+1
δ λ dip,ε = 2(Δ n eff,ε δ n eff,ε )(L+δL) 2m+1 2Δ n eff,ε L 2m+1 2 Δ n eff,ε δLδ n eff,ε L 2m+1
δ λ dip,T = 2(Δ n eff,T +δ n eff,T )L 2m+1 2Δ n eff,T L 2m+1 = 2δ n eff,T L 2m+1

Metrics