Abstract

The bias stability and random walk coefficients (RWC) of interferometric fiber-optic gyroscopes (IFOGs) are directly affected by characteristic noises produced by optoelectronics interactions in optic sensors. This paper documents a novel demodulation method for square wave modulated IFOGs, a method capable of suppressing the white noise that results from optical intensity noises and circuit noises as well as shot noises. In addition, this paper provides a statistical analysis of IFOG signals. Through use of orthogonal harmonic demodulation followed by deployment of matched filters to detract the Sagnac phase from the IFOGs, these channels we then processed, using principle component analysis (PCA), to establish optimal independent synchronous quadrature signal channels. Finally a difference procedure was carried out for the outputs. Our results showed that an experimental sample of the proposed IFOG (1982 m coil under uncontrolled room temperature) achieved a real-time output variance improvement in detecting the Earth’s rotation rate, which is well matched with theoretical calculations of its Cramèr-Rao bound (CRB).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
    [CrossRef]
  2. V. Vali, R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15, 1099–1100 (1976).
    [CrossRef] [PubMed]
  3. H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
    [CrossRef]
  4. G. A. Pavlath, “Closed-loop fiber optic gyros,” Proc. SPIE 2837, 46–60 (1996).
    [CrossRef]
  5. R. C. Rabelo, R. T. de Carvalho, J. Blake, “SNR enhancement of intensity noise-limited FOGs,” J. Lightwave Technol. 18, 2146–2150 (2000).
    [CrossRef]
  6. J. Blake, B. Szafraniec, “Rodom noise in PM and depolarized fiber gyros,” in Conference on Optical Fiber Sensors, Technicol Digest (CD) (Optical Society of America, 1997), paper OWB2.
  7. R. B. Morrow, D. W. Heckman, “High precision IFOG insertion nto the strategic submarine navigation system,” in Proceedings of IEEE Positions Location and Navigation Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 332–338.
  8. D. W. Heckman, M. Baretela, “Interferometric fiber optic gyro technology (IFOG),” IEEE Aerosp. Electron. Syst. Mag. 15, 23–28 (2000).
    [CrossRef]
  9. Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, Z. Li, “Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes,” Opt. Express 20, 25421–25431 (2012).
    [CrossRef] [PubMed]
  10. S. J. Sanders, L. K. Strandjord, D. Mead, “Fiber optic gyro technology trends-a Honeywell perspective,” in Proceedings of Optical Fiber Sensors Conference Technical Digest (Academic, 2002), pp. 5–8.
  11. I. T. Jolliffe, Principal Component Analysis (Springer, 2002), pp. 150–166.
  12. S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiley, 2008), pp. 107–134.
  13. Y. Gronau, M. Tur, “Digital signal processing for an open-loop fiber-optic gyroscope,” Appl. Opt. 34, 5849–5853 (1995).
    [CrossRef] [PubMed]
  14. R. P. Moller, W. K. Burns, “1.06-ptm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16, 1902–1904 (1991).
    [CrossRef]
  15. J. Blake, I. S. Kim, “Distribution of relative intensity noise in the signal and quadrature channels of a fiber-optic gyroscope,” Opt. Lett. 19, 1648–1650 (1994).
    [CrossRef] [PubMed]
  16. F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74, 162–168 (1986).
    [CrossRef]
  17. H. C. Lefevre, “Sagnac effect centenary: a special occasion to share the “serendipity” of the fibre-optic gyroscope,” in Proceedings of European Workshop on Fibre Sensors, (Academic, 2013), p. 25.

2012 (1)

2000 (2)

R. C. Rabelo, R. T. de Carvalho, J. Blake, “SNR enhancement of intensity noise-limited FOGs,” J. Lightwave Technol. 18, 2146–2150 (2000).
[CrossRef]

D. W. Heckman, M. Baretela, “Interferometric fiber optic gyro technology (IFOG),” IEEE Aerosp. Electron. Syst. Mag. 15, 23–28 (2000).
[CrossRef]

1996 (1)

G. A. Pavlath, “Closed-loop fiber optic gyros,” Proc. SPIE 2837, 46–60 (1996).
[CrossRef]

1995 (1)

1994 (1)

1991 (1)

1990 (1)

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

1986 (1)

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74, 162–168 (1986).
[CrossRef]

1976 (1)

1967 (1)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Allan, D. W.

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74, 162–168 (1986).
[CrossRef]

Arditty, H. J.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

Baretela, M.

D. W. Heckman, M. Baretela, “Interferometric fiber optic gyro technology (IFOG),” IEEE Aerosp. Electron. Syst. Mag. 15, 23–28 (2000).
[CrossRef]

Blake, J.

Burns, W. K.

de Carvalho, R. T.

Gronau, Y.

Heckman, D. W.

D. W. Heckman, M. Baretela, “Interferometric fiber optic gyro technology (IFOG),” IEEE Aerosp. Electron. Syst. Mag. 15, 23–28 (2000).
[CrossRef]

R. B. Morrow, D. W. Heckman, “High precision IFOG insertion nto the strategic submarine navigation system,” in Proceedings of IEEE Positions Location and Navigation Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 332–338.

Jolliffe, I. T.

I. T. Jolliffe, Principal Component Analysis (Springer, 2002), pp. 150–166.

Kim, I. S.

Lefevre, H. C.

H. C. Lefevre, “Sagnac effect centenary: a special occasion to share the “serendipity” of the fibre-optic gyroscope,” in Proceedings of European Workshop on Fibre Sensors, (Academic, 2013), p. 25.

Lefèvre, H. C.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

Li, Y.

Li, Z.

Martin, P.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

Mead, D.

S. J. Sanders, L. K. Strandjord, D. Mead, “Fiber optic gyro technology trends-a Honeywell perspective,” in Proceedings of Optical Fiber Sensors Conference Technical Digest (Academic, 2002), pp. 5–8.

Moller, R. P.

Morisse, J.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

Morrow, R. B.

R. B. Morrow, D. W. Heckman, “High precision IFOG insertion nto the strategic submarine navigation system,” in Proceedings of IEEE Positions Location and Navigation Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 332–338.

Pavlath, G. A.

G. A. Pavlath, “Closed-loop fiber optic gyros,” Proc. SPIE 2837, 46–60 (1996).
[CrossRef]

Post, E. J.

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Rabelo, R. C.

Sanders, S. J.

S. J. Sanders, L. K. Strandjord, D. Mead, “Fiber optic gyro technology trends-a Honeywell perspective,” in Proceedings of Optical Fiber Sensors Conference Technical Digest (Academic, 2002), pp. 5–8.

Shorthill, R. W.

Simonpiètri, P.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

Strandjord, L. K.

S. J. Sanders, L. K. Strandjord, D. Mead, “Fiber optic gyro technology trends-a Honeywell perspective,” in Proceedings of Optical Fiber Sensors Conference Technical Digest (Academic, 2002), pp. 5–8.

Szafraniec, B.

J. Blake, B. Szafraniec, “Rodom noise in PM and depolarized fiber gyros,” in Conference on Optical Fiber Sensors, Technicol Digest (CD) (Optical Society of America, 1997), paper OWB2.

Tur, M.

Vali, V.

Vaseghi, S. V.

S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiley, 2008), pp. 107–134.

Vivenot, P.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

Walls, F. L.

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74, 162–168 (1986).
[CrossRef]

Wang, Z.

Yang, Y.

Yu, X.

Zhang, Z.

Appl. Opt. (2)

IEEE Aerosp. Electron. Syst. Mag. (1)

D. W. Heckman, M. Baretela, “Interferometric fiber optic gyro technology (IFOG),” IEEE Aerosp. Electron. Syst. Mag. 15, 23–28 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Proc. IEEE (1)

F. L. Walls, D. W. Allan, “Measurements of frequency stability,” Proc. IEEE 74, 162–168 (1986).
[CrossRef]

Proc. SPIE (2)

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiètri, P. Vivenot, H. J. Arditty, “High dynamic range fiber gyro with all-digital processing,” Proc. SPIE 1367, 72–80 (1990).
[CrossRef]

G. A. Pavlath, “Closed-loop fiber optic gyros,” Proc. SPIE 2837, 46–60 (1996).
[CrossRef]

Rev. Mod. Phys. (1)

E. J. Post, “Sagnac effect,” Rev. Mod. Phys. 39, 475–493 (1967).
[CrossRef]

Other (6)

J. Blake, B. Szafraniec, “Rodom noise in PM and depolarized fiber gyros,” in Conference on Optical Fiber Sensors, Technicol Digest (CD) (Optical Society of America, 1997), paper OWB2.

R. B. Morrow, D. W. Heckman, “High precision IFOG insertion nto the strategic submarine navigation system,” in Proceedings of IEEE Positions Location and Navigation Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 332–338.

S. J. Sanders, L. K. Strandjord, D. Mead, “Fiber optic gyro technology trends-a Honeywell perspective,” in Proceedings of Optical Fiber Sensors Conference Technical Digest (Academic, 2002), pp. 5–8.

I. T. Jolliffe, Principal Component Analysis (Springer, 2002), pp. 150–166.

S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiley, 2008), pp. 107–134.

H. C. Lefevre, “Sagnac effect centenary: a special occasion to share the “serendipity” of the fibre-optic gyroscope,” in Proceedings of European Workshop on Fibre Sensors, (Academic, 2013), p. 25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The IFOG experiment configuration.

Fig. 2
Fig. 2

Experimental long-term output of the sine wave modulated IFOG and square wave modulated IFOG. In contrast, the random walk in the outputs is notably reduced.

Fig. 3
Fig. 3

Allan standard variance curve, in which the red line is sine wave modulated outputs Ωt and the green line is square wave modulated outputs Ωs.

Fig. 4
Fig. 4

Comparison between before PCA and after PCA, this picture is a two dimensional projection of the ΩI and ΩQ.

Fig. 5
Fig. 5

Experimental long-term output of the IFOG, comparing findings from before PCA processing and after PCA processing. To obtain a high contrast, we chose the high correlation coefficient section.

Fig. 6
Fig. 6

Allan standard variance curve, in which the blue line is synchronous difference Ωdiv before PCA processing and the cyan line is Ωpca after PCA.

Tables (2)

Tables Icon

Table 1 Allan Variance Indices of Ωt and Ωs

Tables Icon

Table 2 Allan Variance Indices of Ωdiv and Ωpca

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I D = I 0 { 1 + cos [ ϕ s + Δ ϕ m ( t ) + ϕ f ] } ,
I I = n I I n = n 2 2 2 n π I 0 sin ( ϕ s + ϕ f ) , n = 1 , 3 , 5 ,
I Q = n I Q n = n 2 2 2 n π I 0 sin ( ϕ s + ϕ f ) , n = 1 , 3 , 5 ,
Ω I n = λ c 2 π L D arcsin ( I I n π I 0 2 ) , n = 1 , 3 , 5 ,
Ω Q n = λ c 2 π L D arcsin ( I Q n π I 0 2 ) , n = 1 , 3 , 5 ,
< i N 2 > = < i I 2 > + < i S 2 > + < i T 2 > = ( < i > 2 Δ ν + 2 e < i > + 4 k T R L ) B ,
N ( t ) = N I ( t ) g ( t ) ,
g ( t ) = 1 2 { 1 + cos [ Δ ϕ m ( t ) ] } ,
f Ω | Ω ( Ω | Ω ) = 1 f ( Ω ) f Ω | Ω ( Ω | Ω ) ,
f Ω | Ω ( Ω | Ω ) = Π n ( 1 2 π σ n 2 ) 1 / 2 exp [ ( Ω n Ω ) 2 2 σ n 2 ] ,
Ω ^ ( Ω ) = n A n 2 A 1 2 + A 3 2 + + A n 2 Ω n , n = 1 , 3 , 5 ,
Ω I ( t ) = Ω + N I ( t ) , Ω Q ( t ) = Ω + N Q ( t ) ,
Ω div ( t ) = Ω I ( t ) + Ω Q ( t ) 2 = Ω + N I ( t ) + N Q ( t ) 2 .
f ( Ω ( t ) ) = 1 2 π σ 2 1 ρ exp { 1 2 [ Ω ( t ) Ω ] T Σ 1 [ Ω ( t ) Ω ] } Ω ( t ) = [ Ω I ( t ) Ω Q ( t ) ] , Σ = [ σ I 2 ρ σ I σ Q ρ σ I σ Q σ Q 2 ] ,
Var [ Ω ^ ( Ω I , Ω Q ) ] 1 + ρ 4 ( σ I 2 + σ Q 2 ) , ρ 0
Var [ Ω div ( t ) ] = 1 4 ( σ I 2 + σ Q 2 + 2 ρ σ I σ Q ) ,
Ω ( t ) = [ Ω I ( t ) Ω Q ( t ) ] = [ c 11 c 21 c 12 c 22 ] T [ Ω I ( t ) Ω Q ( t ) ] ,
[ c 11 c 21 c 12 c 22 ] = [ σ I 2 σ Q 2 + ( σ I 2 σ Q 2 ) 2 + 4 ρ 2 σ I 2 σ Q 2 2 ρ σ I σ Q a σ I 2 σ Q 2 ( σ I 2 σ Q 2 ) 2 4 ρ 2 σ I 2 σ Q 2 2 ρ σ I σ Q b a b ] ,
Var [ Ω pca ( t ) ] = Var [ Ω I ( t ) + Ω Q ( t ) 2 ] = 1 + ρ + 1 ρ 4 σ 2 ¯ = 1 2 σ 2 ¯ = CRB ,
σ 2 ¯ = σ I 2 + σ Q 2 2 ,

Metrics