Abstract

We demonstrate a sub-centimeter spatial resolution fiber-based distributed temperature sensor with enhanced measurement accuracy and reduced acquisition time. Our approach employs time domain analysis of backscattered Stokes and anti-Stokes photons generated via spontaneous Raman scattering in a chalcogenide (ChG) As2S3 fiber for temperature monitoring. The sensor performance is significantly improved by exploiting the high Raman coefficient and increased refractive index of the ChG fiber. We achieve a temperature uncertainty of ± 0.65 °C for a short measurement time of only 5 seconds; whilst the detection uncertainty is less than ± 0.2 °C for a longer integration time of 2 minutes. We also investigate the optimum Stokes and anti-Stokes bands for optimal sensing performance. Our theoretical analysis shows that a small detuning frequency regime from a pump is more suitable for rapid measurements while a large detuning regime provides higher temperature resolution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
    [CrossRef]
  2. C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
    [CrossRef]
  3. S. Nakamura, S. Morooka, K. Kawasaki, “Conductor temperature monitoring system in uderground power transmission XLPE cable joints,” IEEE Trans. Power Delivery 7(4), 1688–1697 (1992).
    [CrossRef]
  4. T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998).
    [CrossRef]
  5. F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
    [CrossRef]
  6. J. Dornstadter and M. Aufleger, “Distributed temperature sensing in dams,” in Proc. The Prospect for Reservoirs in the 21st Century, London, Sep. 1998.
  7. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  8. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [CrossRef] [PubMed]
  9. T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Plasmonics 8(2), 515–521 (2013).
    [CrossRef]
  10. H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
    [CrossRef] [PubMed]
  11. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [CrossRef] [PubMed]
  12. N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
    [CrossRef]
  13. Y.-G. Han, “A long-distance remote sensing technique using a multiwavelength Raman fiber laser based on fiber Bragg gratings embedded in a quartz tube,” IEEE Sens. J. 11(5), 1152–1156 (2011).
    [CrossRef]
  14. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
    [CrossRef]
  15. S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept wavelength interferometry,” in Proc. Optical Fiber Sensors, Mexico, 2006.
  16. G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
    [CrossRef]
  17. M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
    [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  19. S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012).
    [CrossRef] [PubMed]
  20. B. J. Eggleton, B. Luther-Davies, K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  21. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
    [CrossRef] [PubMed]
  22. M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
    [CrossRef]
  23. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
    [CrossRef]
  24. A. Ukil, H. Braendle, P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
    [CrossRef]
  25. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
    [CrossRef] [PubMed]
  26. Q. Lin, F. Yaman, G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
    [CrossRef]

2013

T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Plasmonics 8(2), 515–521 (2013).
[CrossRef]

H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, M.-P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
[CrossRef] [PubMed]

2012

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012).
[CrossRef] [PubMed]

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

A. Ukil, H. Braendle, P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[CrossRef]

2011

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Y.-G. Han, “A long-distance remote sensing technique using a multiwavelength Raman fiber laser based on fiber Bragg gratings embedded in a quartz tube,” IEEE Sens. J. 11(5), 1152–1156 (2011).
[CrossRef]

W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
[CrossRef] [PubMed]

2010

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[CrossRef] [PubMed]

2009

2007

G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Q. Lin, F. Yaman, G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

1998

T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998).
[CrossRef]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
[CrossRef]

1992

S. Nakamura, S. Morooka, K. Kawasaki, “Conductor temperature monitoring system in uderground power transmission XLPE cable joints,” IEEE Trans. Power Delivery 7(4), 1688–1697 (1992).
[CrossRef]

1985

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Aggarwal, I. D.

Agrawal, G. P.

Q. Lin, F. Yaman, G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Asobe, M.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
[CrossRef]

Bae, H. K.

Baek, B.

S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012).
[CrossRef] [PubMed]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Baida, F. I.

Bernal, M.-P.

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Bogaard, T. A.

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Bolognini, G.

G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Braendle, H.

A. Ukil, H. Braendle, P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[CrossRef]

Clark, A. S.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

Collet, M.

Collins, M. J.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

Courjal, N.

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Das, R.

T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Plasmonics 8(2), 515–521 (2013).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Dekker, S.

Di Pasquale, F.

G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Dong, X.

Dubaniewicz, T. H.

T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998).
[CrossRef]

Dyer, S. D.

S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012).
[CrossRef] [PubMed]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Eggleton, B. J.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Fu, L. B.

Fuller, M. A.

T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998).
[CrossRef]

Guo, J.

Guyot, C.

Hadfield, R. H.

S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012).
[CrossRef] [PubMed]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Han, Y.-G.

Y.-G. Han, “A long-distance remote sensing technique using a multiwavelength Raman fiber laser based on fiber Bragg gratings embedded in a quartz tube,” IEEE Sens. J. 11(5), 1152–1156 (2011).
[CrossRef]

Hausner, M.

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Hausner, M. B.

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

He, S.

Hill, D.

F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
[CrossRef]

Hoes, O.

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
[CrossRef]

Jansen, J.

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

Jha, R.

T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Plasmonics 8(2), 515–521 (2013).
[CrossRef]

Jin, S.

Judge, A. C.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
[CrossRef]

Kawasaki, K.

S. Nakamura, S. Morooka, K. Kawasaki, “Conductor temperature monitoring system in uderground power transmission XLPE cable joints,” IEEE Trans. Power Delivery 7(4), 1688–1697 (1992).
[CrossRef]

Kennedy, A. M.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kim, G.-D.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kovalchik, P. G.

T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998).
[CrossRef]

Krippner, P.

A. Ukil, H. Braendle, P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[CrossRef]

Krzeminska, D. M.

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Lamont, M. R. E.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lee, H.-S.

Lee, S.-S.

Lee, W.-G.

Lim, B. T.

Lin, Q.

Q. Lin, F. Yaman, G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Lu, H.

Luan, F.

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Magi, E.

Mägi, E. C.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

Moretti, A.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Morooka, S.

S. Nakamura, S. Morooka, K. Kawasaki, “Conductor temperature monitoring system in uderground power transmission XLPE cable joints,” IEEE Trans. Power Delivery 7(4), 1688–1697 (1992).
[CrossRef]

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
[CrossRef]

Nakamura, S.

S. Nakamura, S. Morooka, K. Kawasaki, “Conductor temperature monitoring system in uderground power transmission XLPE cable joints,” IEEE Trans. Power Delivery 7(4), 1688–1697 (1992).
[CrossRef]

Nam, S. W.

S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012).
[CrossRef] [PubMed]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Nguyen, H. C.

Park, C.-H.

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Qian, W.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

Rutten, M. M.

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Sadani, B.

Sanghera, J. S.

Schroth, M. H.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Scott, L. W.

T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998).
[CrossRef]

Selker, J.

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Selker, J. S.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Shahnia, S.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

Shaw, L. B.

Smoot, A. R.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Soto, M. A.

G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Srivastava, T.

T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Plasmonics 8(2), 515–521 (2013).
[CrossRef]

Steel, M. J.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

Steele-Dunne, S. C.

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Tanimola, F.

F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
[CrossRef]

Tanner, M. G.

S. D. Dyer, M. G. Tanner, B. Baek, R. H. Hadfield, S. W. Nam, “Analysis of a distributed fiber-optic temperature sensor using single-photon detectors,” Opt. Express 20(4), 3456–3466 (2012).
[CrossRef] [PubMed]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Thomas, C. K.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Tufillaro, N. B.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Tuniz, A.

Tyler, S.

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

Tyler, S. W.

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Ukil, A.

A. Ukil, H. Braendle, P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[CrossRef]

Ulliac, G.

van de Giesen, N.

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

van de Giesen, N. C.

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Wei, H.

Xiong, C.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
[CrossRef] [PubMed]

Yaman, F.

Q. Lin, F. Yaman, G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Yeom, D. I.

Zeeman, M. J.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Zhang, S.

Zhang, Z.

Zhao, C.-L.

Appl. Opt.

Appl. Phys. Lett.

M. J. Collins, A. C. Judge, A. S. Clark, S. Shahnia, E. C. Mägi, M. J. Steel, C. Xiong, B. J. Eggleton, “Broadband photon-counting Raman spectroscopy in short optical waveguides,” Appl. Phys. Lett. 101(21), 211110 (2012).
[CrossRef]

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, S. W. Nam, “High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 99(20), 201110 (2011).
[CrossRef]

Boundary Layer Meteorol.

C. K. Thomas, A. M. Kennedy, J. S. Selker, A. Moretti, M. H. Schroth, A. R. Smoot, N. B. Tufillaro, M. J. Zeeman, “High-resolution fibre-optic temperature sensing: A new tool to study the two-dimensional structure of atmospheric surface-layer flow,” Boundary Layer Meteorol. 142(2), 177–192 (2012).
[CrossRef]

Electron. Lett.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569–570 (1985).
[CrossRef]

IEEE Sens. J.

Y.-G. Han, “A long-distance remote sensing technique using a multiwavelength Raman fiber laser based on fiber Bragg gratings embedded in a quartz tube,” IEEE Sens. J. 11(5), 1152–1156 (2011).
[CrossRef]

A. Ukil, H. Braendle, P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12(5), 885–892 (2012).
[CrossRef]

IEEE Trans. Ind. Appl.

T. H. Dubaniewicz, P. G. Kovalchik, L. W. Scott, M. A. Fuller, “Distributed measurement of conductor temperatures in mine training cables using fiber-optic technology,” IEEE Trans. Ind. Appl. 34(2), 395–398 (1998).
[CrossRef]

IEEE Trans. Power Delivery

S. Nakamura, S. Morooka, K. Kawasaki, “Conductor temperature monitoring system in uderground power transmission XLPE cable joints,” IEEE Trans. Power Delivery 7(4), 1688–1697 (1992).
[CrossRef]

J. Appl. Phys.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, “Third order nonlinear spectroscopy in As2S3 chalcogenide glass fibers,” J. Appl. Phys. 77(11), 5518–5523 (1995).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

J. Nat. Gas Sci. Eng.

F. Tanimola, D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Nat. Gas Sci. Eng. 1(4–5), 134–143 (2009).
[CrossRef]

Meas. Sci. Technol.

G. Bolognini, J. Park, M. A. Soto, N. Park, F. Di Pasquale, “Analysis of distributed temperature sensing based in Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[CrossRef]

Nat. Photonics

B. J. Eggleton, B. Luther-Davies, K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Express

Opt. Lett.

Phys. Rev. A

Q. Lin, F. Yaman, G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Plasmonics

T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide,” Plasmonics 8(2), 515–521 (2013).
[CrossRef]

Sensors

N. van de Giesen, S. C. Steele-Dunne, J. Jansen, O. Hoes, M. B. Hausner, S. Tyler, J. Selker, “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing date,” Sensors 12(12), 5471–5485 (2012).
[CrossRef]

Water Resour. Res.

S. C. Steele-Dunne, M. M. Rutten, D. M. Krzeminska, M. Hausner, S. W. Tyler, J. Selker, T. A. Bogaard, N. C. van de Giesen, “Feasibility of soil moisture estimation using passive distributed temperature sensing,” Water Resour. Res. 46(3), W03534 (2010).
[CrossRef]

Other

S. T. Kreger, D. K. Gifford, M. E. Froggatt, B. J. Soller, and M. S. Wolfe, “High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept wavelength interferometry,” in Proc. Optical Fiber Sensors, Mexico, 2006.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

J. Dornstadter and M. Aufleger, “Distributed temperature sensing in dams,” in Proc. The Prospect for Reservoirs in the 21st Century, London, Sep. 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup of the ChG fiber-based distributed temperature sensor. (i) The histogram constructed from a time-interval analyzer (TIA) is used to determine the location and temperature of heating and cooling sources. PC, polarization controller; BPF, band-pass filter; AWG, arrayed waveguide grating; SSPD, superconducting nanowire-based single photon detector; solid line, optical path; dashed line, electronic path.

Fig. 2
Fig. 2

Locations of (a) a heat source at different positions with (a1) a zoom-in heating section, and (b) multiple heating and cooling sources vs. photon counts, which are used to calculate the temperature, are shown in the histograms constructed via a single-photon detector and a TIA. The temperature and length of (i) a heat source: 100 °C and 2 cm; (ii) first cooling source: 5 °C and 7 cm; (iii) second cooling source: 5 °C and 10 cm; and (iv) third cooling source: −196 °C and 20 cm, respectively.

Fig. 3
Fig. 3

Temperature detected by a ChG fiber-based sensor (blue dots with error bars) and the corresponding temperature measured with a conventional thermometer (dashed line). Inset: three histograms captured after 5 seconds at three different temperature values.

Fig. 4
Fig. 4

The histograms of the (upper) As2S3 and (lower) silica fiber, which were used to calculate their refractive indices via the time delay τ between two heated spots.

Fig. 5
Fig. 5

Theoretical analysis to find optimum detuning regimes for individual applications. The top two figures show the phonon population ratio Nheating/NT_room while the bottom two figures present the ratio NT_room/Ncooling for the (left) Stokes and (right) anti-Stokes components.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I S/aS =ηΔ f S/aS P o L g R N S/aS D e 2αx ,
N S =1+ 1 e Ω S_p k B T 1
N aS = 1 e Ω aS_p k B T 1 ,
T= | Ω aS_p | k B .ln( η aS Δ f aS | g R_aS |( I S ( x ) B S ) η S Δ f S | g R_S |( I aS ( x ) B aS ) ) ,
ΔT k B T Ω S_p 1 I S t + 1 I aS t ,
L r e s = 1 2 . c n C h G . t j i t t e r ,

Metrics