Abstract

We study the polarization properties of quantum dot (QD) emission coupled with the fundamental cavity modes. A rotation of polarization axis and a change of polarization degree are observed as the coupling is varied. To explain this observation, we derive an analytical model considering the polarization misalignment between QD dipole and cavity mode field. Our model also provides a new approach to extract the anisotropic Purcell factors by analyzing the polarization of detected quantum dot emission coupled to the cavity mode, which paves the way to develop high-efficiency polarized single photon sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Gérard, B. Gayral, “InAs quantum dots-artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
    [CrossRef]
  2. J. M. Gerard, B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
    [CrossRef]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  4. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
    [CrossRef] [PubMed]
  6. A. Kiraz, M. Atature, A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
    [CrossRef]
  7. G. S. Solomon, M. Pelton, Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
    [CrossRef] [PubMed]
  8. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [CrossRef] [PubMed]
  9. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [CrossRef] [PubMed]
  10. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [CrossRef]
  11. T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
    [CrossRef]
  12. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [CrossRef] [PubMed]
  13. B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
    [CrossRef]
  14. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
    [CrossRef]
  15. A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
    [CrossRef]
  16. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [CrossRef]
  17. C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
    [CrossRef]
  18. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
    [CrossRef] [PubMed]
  19. I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
    [CrossRef]
  20. I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
    [CrossRef]
  21. D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
    [CrossRef]
  22. C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
    [CrossRef]
  23. S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
    [CrossRef]
  24. C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
    [CrossRef]
  25. M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
    [CrossRef]
  26. T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, T. Sogawa, “Cavity mode emission in weakly coupled quantum dot--cavity systems,” Opt. Express 17(8), 6643–6654 (2009).
    [CrossRef] [PubMed]

2012 (2)

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

2011 (2)

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
[CrossRef]

2009 (2)

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, T. Sogawa, “Cavity mode emission in weakly coupled quantum dot--cavity systems,” Opt. Express 17(8), 6643–6654 (2009).
[CrossRef] [PubMed]

2008 (2)

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

2006 (1)

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

2005 (3)

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

2004 (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

A. Kiraz, M. Atature, A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[CrossRef]

2002 (3)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

2001 (3)

G. S. Solomon, M. Pelton, Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[CrossRef] [PubMed]

J. M. Gérard, B. Gayral, “InAs quantum dots-artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (2)

B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Adachi, S.

S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
[CrossRef]

Atature, M.

A. Kiraz, M. Atature, A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[CrossRef]

Auffeves, A.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Badolato, A.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Bloch, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Böckler, C.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Cassabois, G.

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Chang, W. H.

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

Cheng, S. J.

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

Chou, H. Y.

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

Claudon, J.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
[CrossRef]

Couteau, C.

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

Daraei, A.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Darson, D.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Debusmann, R.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Delalande, C.

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Dousse, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Ebbens, A.

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

Eichfelder, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Favero, I.

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Ferreira, R.

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Forchel, A.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Fox, A. M.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Fry, P. W.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Fürst, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Gayral, B.

J. M. Gérard, B. Gayral, “InAs quantum dots-artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

J. M. Gerard, B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
[CrossRef]

B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Gerard, J. M.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

J. M. Gerard, B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
[CrossRef]

B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
[CrossRef]

Gérard, J. M.

J. M. Gérard, B. Gayral, “InAs quantum dots-artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Gérard, J.-M.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Grenouillet, L.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Grousson, R.

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

Guimaraes, P. S. S.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Hargart, F.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Heindel, T.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hofling, S.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Höfling, S.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Hopkinson, M.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

Hostein, R.

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Hughes, S.

Imamoglu, A.

A. Kiraz, M. Atature, A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Jankovic, A.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Jetter, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Kaji, R.

S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
[CrossRef]

Kamada, H.

Kamp, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kessler, C. A.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kida, T.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Kiraz, A.

A. Kiraz, M. Atature, A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Kistner, C.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Krizhanovskii, D. N.

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Lanco, L.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Legrand, B.

B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Lemaitre, A.

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

Lemaître, A.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Lermer, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Liew, S. L.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

Lin, C. H.

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

Lin, S. D.

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

Loffler, A.

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Martinez, A.

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

Miard, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Michler, P.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Milburn, G. J.

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

Mosset, A.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Munsch, M.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Muto, S.

S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
[CrossRef]

Nauerth, S.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Notomi, M.

Ohno, S.

S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
[CrossRef]

Okamoto, H.

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

G. S. Solomon, M. Pelton, Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[CrossRef] [PubMed]

Petroff, P. M.

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Poizat, J. P.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

Pulizzi, F.

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

Rau, M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Roblin, C.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Roßbach, R.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Roussignol, Ph.

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Sagnes, I.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Sanvitto, D.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Sasakura, H.

S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Schneider, C.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Schulz, W.-M.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Seidelin, S.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Semenova, E.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Senellart, P.

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Skolnick, M. S.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

Sogawa, T.

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

G. S. Solomon, M. Pelton, Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[CrossRef] [PubMed]

Suffczynski, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Tahraoui, A.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Tartakovskii, A. I.

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

Tawara, T.

Thierry-Mieg, V.

B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Timpson, J. A.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Tonin, C.

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

Vinck, H.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Voisin, C.

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

Voliotis, V.

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

Vuckovic, J.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Weier, H.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Weinfurter, H.

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Whittaker, D. M.

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

Wright, T.

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

G. S. Solomon, M. Pelton, Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

You, W. T.

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

B. Gayral, J. M. Gerard, B. Legrand, E. Costard, V. Thierry-Mieg, “Optical study of GaAs/AlAs pillar microcavities with elliptical cross section,” Appl. Phys. Lett. 72(12), 1421–1423 (1998).
[CrossRef]

A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P. W. Fry, M. Hopkinson, P. S. S. Guimaraes, H. Vinck, D. M. Whittaker, M. S. Skolnick, A. M. Fox, “Control of polarized single quantum dot emission in high-quality-factor microcavity pillars,” Appl. Phys. Lett. 88(5), 051113 (2006).
[CrossRef]

C. Böckler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, J. M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities,” Appl. Phys. Lett. 92(9), 091107 (2008).
[CrossRef]

I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, J. M. Gerard, “Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble,” Appl. Phys. Lett. 86(4), 041904 (2005).
[CrossRef]

S. Ohno, S. Adachi, R. Kaji, S. Muto, H. Sasakura, “Optical anisotropy and photoluminescence polarization in single InAlAs quantum dots,” Appl. Phys. Lett. 98(16), 161912 (2011).
[CrossRef]

J. Appl. Phys. (1)

A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimaraes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, M. Hopkinson, “Control of polarization and mode mapping of small volume high Q micropillars,” J. Appl. Phys. 102(4), 043105 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nature (4)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[CrossRef] [PubMed]

New J. Phys. (1)

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14(8), 083001 (2012).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

A. Kiraz, M. Atature, A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004).
[CrossRef]

Phys. Rev. B (5)

C. Tonin, R. Hostein, V. Voliotis, R. Grousson, A. Lemaitre, A. Martinez, “Polarization properties of excitonic qubits in single self-assembled quantum dots,” Phys. Rev. B 85(15), 155303 (2012).
[CrossRef]

M. Munsch, A. Mosset, A. Auffeves, S. Seidelin, J. P. Poizat, J.-M. Gérard, A. Lemaître, I. Sagnes, P. Senellart, “Continuous wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities,” Phys. Rev. B 80(11), 115312 (2009).
[CrossRef]

I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J. P. Poizat, J. M. Gerard, “Fast exciton spin relaxation in single quantum dots,” Phys. Rev. B 71(23), 233304 (2005).
[CrossRef]

D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, M. Hopkinson, “Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy,” Phys. Rev. B 72(16), 161312 (2005).
[CrossRef]

C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, W. H. Chang, “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 83(7), 075317 (2011).
[CrossRef]

Phys. Rev. Lett. (4)

G. S. Solomon, M. Pelton, Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity,” Phys. Rev. Lett. 86(17), 3903–3906 (2001).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Physica E (1)

J. M. Gérard, B. Gayral, “InAs quantum dots-artificial atoms for solid-state cavity-quantum electrodynamics,” Physica E 9(1), 131–139 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Temperature-dependent QD emission spectra of a 3-μm diameter micropillar. Resonance between QD and CM is observed at T = 35.2 K. The inset shows a SEM picture of the studied micropillar.

Fig. 2
Fig. 2

(a) Normalized PL of CM taken at two polarization angles showing that the splitting between two linearly polarized modes is about 10 μeV. There is slight difference in the quality factors of two cavity modes. Inset: SEM picture of top-viewed micropillar. (b) Polarization polar diagram of measured total PL intensity (blue dots) for CM at T = 10K. The green and red lines represent respectively two orthogonal linearly-polarized modes with polarization angle of 102° and 12°.

Fig. 3
Fig. 3

(a) Polarization polar diagram of QD (black dot) and CM (orange square) for Δ = −0.85 meV. θd is the included angle between the polarization angles of QD and CM. (b) Polarization diagram of QD for Δ = −0.85 meV (black dot) and −0.2meV (blue dot).

Fig. 4
Fig. 4

(a) Polarization axis and (b) polarization degree of detected QD emission as a function of detuning.

Fig. 5
Fig. 5

(a) Detected emission intensity in the polar diagram and (b) polarization axis of detected PL for θd = 0°(black symbol), 45°(red symbol) and 90°(blue symbol) as a function of detuning. The polar diagrams plotted with orange symbol in (a) represent the CM polarized at 90°, 135° and 180° respectively. (c) The curves of polarization axis as a function of detuning for different magnitudes of V when θd = 45°.

Fig. 6
Fig. 6

(a) Calculated curves and our data for the polarization axis (upper) and polarization degree (lower) of detected PL as a function of Δ/ωc. (b) Comparison of polarization degree between our calculated curve and the measured data taken from [15]. The splitting between X and Y polarized cavity modes is about 500 μeV. (c) Comparison of polarization degree between our calculated curves and the measured data taken from [14]. QD1(black symbol), QD2(red symbol) and QD3(green symbol) respectively own a polarization degree of 0, −0.35 and 0.25 at large detuning. The solid line with corresponding color is calculated with PlCM = 0.8. The blue dashed line is plotted with Pl = 0 and PlCM = 1.

Fig. 7
Fig. 7

PL integrated intensity as a function of pump power when on resonance (black cross) and far from resonance (red cross). The data circled are used to extract the ratio α.

Fig. 8
Fig. 8

Saturated pump power as a function of Δ/ωc. The blue line is plotted with a function of (1 + FL(Δ))1/2.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

F= τ 0 τ cav = 3Q ( λ c /n) 3 4 π 2 V eff L(Δ) | ε ( r ) | 2 | ε max | 2 ( d ε ( r ) | d || ε ( r ) | ) 2 ,
I QD det (Δ,r,θ)= I QD leak (Δ,r,θ)+ I QD cav (Δ,r,θ) ,
I QD leak (Δ,r,θ)= Α 1 η leak γ X p X (Δ,r)[ 1+N cos 2 (θ θ D ) ] ,
I QD cav (Δ,r,θ)= B 1 η cav p X (Δ,r)Γ= B 1 η cav p X (Δ,r) γ X F cos 2 (θ θ C )L(Δ) ,
I QD det (Δ,r,θ)=π η leak γ X p X [ 1 P l 2 + P l cos 2 (θ θ D )+αF cos 2 (θ θ C )L(Δ) ] ,
θ det ( Δ ) = θ D + 1 2 sin 1 { V L ( Δ ) sin ( 2 θ d ) [ 1 + 2 V L ( Δ ) cos ( 2 θ d ) + V 2 L ( Δ ) 2 ] 1 / 2 } ,
Γ= γ X [ F H cos 2 (θ θ C )L( Δ H )+ F V sin 2 (θ θ C )L( Δ V ) ] ,
I QD det ~ 1 P l 2 + P l cos 2 (θ θ D )+ α H F H L( Δ H ) cos 2 (θ θ C )+ α V F V L( Δ V ) sin 2 (θ θ C ) .
I Q D det ~ 1 P l 2 + P l cos 2 ( θ θ D ) + α F V L ( Δ ) [ κ cos 2 ( θ θ C ) + sin 2 ( θ θ C ) ] ,
P l det = 2 cos 2 [ θ det (Δ) θ D ]1+VL(Δ){ 2 cos 2 [ θ det (Δ) θ C ]1 } 1/P l +VL(Δ) ( κ+1 ) / ( κ1 ) .
P l det = α V F V L( Δ V ) α H F H L( Δ H ) 1+ α H F H L( Δ H )+ α V F V L( Δ V ) .
P l det = P l +αFL(Δ) 1+αFL(Δ) .
I QD det ~ 1 P l 2 + P l cos 2 (θ θ D )+ 1 ξ+1 αFL(Δ)[ cos 2 (θ θ C )+ξ sin 2 (θ θ C ) ] ,
P l det = P l +αFL(Δ) P l CM 1+αFL(Δ) ,
ε(Δ,r)= I QD det (0,r) I QD det (Δ,r) = p X (0,r) p X (Δ,r) 1+αF 1+αFL(Δ) .
ε below = 1+FL(Δ) 1+F 1+αF 1+αFL(Δ) .
ε above = 1+αF 1+αFL(Δ) .

Metrics