Abstract

Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yang, Y. Tang, J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Res. 1, 52–57 (2013).
    [CrossRef]
  2. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
    [CrossRef] [PubMed]
  3. M. Jiang, P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007).
    [CrossRef] [PubMed]
  4. S. D. Jackson, T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
    [CrossRef]
  5. M. Giesberts, J. Geiger, M. Traub, H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 719502 (2009).
  6. C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
    [CrossRef]
  7. C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21, 12302–12308 (2013).
    [CrossRef] [PubMed]
  8. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  9. L. Zenteno, E. Snitzer, H. Po, R. Tumminelli, F. Hakimi, “Gain switching of a Nd3+-doped fiber laser.” Opt. Lett. 14, 671–673 (1989).
    [CrossRef] [PubMed]
  10. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  11. N. Simakov, A. Hemming, S. Bennetts, J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19, 14949–14954 (2011).
    [CrossRef] [PubMed]
  12. V. Agrež, R. Petkovšek, “Gain-switched Yb-doped fiber laser for micro-processing,” Appl. Opt. 52, 3066–3072 (2013).
    [CrossRef]
  13. J. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  14. J. Zhang, Y. Wang, D. Shen, “High repetition rate gain-switched thulium fiber laser with an acousto-optic modulator,” IEEE Photonics Technol. Lett. 25, 1943–1946 (2013).
    [CrossRef]
  15. M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
    [CrossRef]
  16. Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
    [CrossRef]
  17. J. Swiderski, M. Michalska, G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [CrossRef] [PubMed]

2013 (7)

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[CrossRef]

J. Zhang, Y. Wang, D. Shen, “High repetition rate gain-switched thulium fiber laser with an acousto-optic modulator,” IEEE Photonics Technol. Lett. 25, 1943–1946 (2013).
[CrossRef]

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

J. Yang, Y. Tang, J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Res. 1, 52–57 (2013).
[CrossRef]

J. Swiderski, M. Michalska, G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[CrossRef] [PubMed]

V. Agrež, R. Petkovšek, “Gain-switched Yb-doped fiber laser for micro-processing,” Appl. Opt. 52, 3066–3072 (2013).
[CrossRef]

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21, 12302–12308 (2013).
[CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (2)

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

M. Giesberts, J. Geiger, M. Traub, H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 719502 (2009).

2007 (1)

2006 (1)

J. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

1998 (1)

S. D. Jackson, T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

1989 (1)

Agrež, V.

Bang, O.

Bennetts, S.

Blau, P.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Clarkson, W. A.

Coen, S.

J. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Dudley, J.

J. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Feng, G.

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Fitzau, O.

Geiger, J.

M. Giesberts, J. Geiger, M. Traub, H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 719502 (2009).

Genty, G.

J. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Giesberts, M.

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21, 12302–12308 (2013).
[CrossRef] [PubMed]

M. Giesberts, J. Geiger, M. Traub, H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 719502 (2009).

Glick, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Hakimi, F.

Hansen, K. P.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
[CrossRef] [PubMed]

Haub, J.

Hemming, A.

Hoffmann, H.

M. Giesberts, J. Geiger, M. Traub, H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 719502 (2009).

Hoffmann, H. D.

Jackson, S. D.

S. D. Jackson, T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

Jiang, M.

Jungbluth, B.

Katz, M.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

King, T. A.

S. D. Jackson, T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Larsen, C.

Lebiush, E.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Mattsson, K. E.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
[CrossRef] [PubMed]

Maze, G.

Michalska, M.

Nafcha, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Nilsson, J.

Noordegraaf, D.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[CrossRef]

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
[CrossRef] [PubMed]

Nyga, S.

Petkovšek, R.

Po, H.

Richardson, D. J.

Shen, D.

J. Zhang, Y. Wang, D. Shen, “High repetition rate gain-switched thulium fiber laser with an acousto-optic modulator,” IEEE Photonics Technol. Lett. 25, 1943–1946 (2013).
[CrossRef]

Simakov, N.

Sintov, Y.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Skovgaard, P. M. W.

Snitzer, E.

Sørensen, S. T.

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[CrossRef]

Soreq, N.

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Swiderski, J.

Tang, Y.

J. Yang, Y. Tang, J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Res. 1, 52–57 (2013).
[CrossRef]

Tao, M.

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Tayebati, P.

Traub, M.

M. Giesberts, J. Geiger, M. Traub, H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 719502 (2009).

Tumminelli, R.

Wang, Y.

J. Zhang, Y. Wang, D. Shen, “High repetition rate gain-switched thulium fiber laser with an acousto-optic modulator,” IEEE Photonics Technol. Lett. 25, 1943–1946 (2013).
[CrossRef]

Wang, Z.

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Xu, J.

J. Yang, Y. Tang, J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Res. 1, 52–57 (2013).
[CrossRef]

Yan, Y.

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Yang, J.

J. Yang, Y. Tang, J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Res. 1, 52–57 (2013).
[CrossRef]

Yang, P.

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Ye, X.

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Zenteno, L.

Zhang, J.

J. Zhang, Y. Wang, D. Shen, “High repetition rate gain-switched thulium fiber laser with an acousto-optic modulator,” IEEE Photonics Technol. Lett. 25, 1943–1946 (2013).
[CrossRef]

Zhao, J.

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

S. D. Jackson, T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. Zhang, Y. Wang, D. Shen, “High repetition rate gain-switched thulium fiber laser with an acousto-optic modulator,” IEEE Photonics Technol. Lett. 25, 1943–1946 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

M. Tao, J. Zhao, Y. Yan, Z. Wang, P. Yang, G. Feng, X. Ye, “Experimental investigation of gain-switched Tm-Ho Co-doped single clad fiber lasers,” Laser Phys. 23, 105101 (2013).
[CrossRef]

Opt. Commun. (1)

C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun. 290, 170–174 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Photonics Res. (1)

J. Yang, Y. Tang, J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photonics Res. 1, 52–57 (2013).
[CrossRef]

Proc. SPIE (2)

M. Giesberts, J. Geiger, M. Traub, H. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” Proc. SPIE 7195, 719502 (2009).

Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” Proc. SPIE 7195, 719529 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (1)

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Yb-doped fiber laser pumped by the diode pumps that are spliced to a high reflector fiber Bragg grating (HR FBG). A varying length of Yb-doped fiber is spliced to the HR and the low reflector grating (LR FBG). By modulating the pumps the laser produces stable pulses.

Fig. 2
Fig. 2

Three superimposed pulses from a typical pulse train (red, blue, and black lines). The timing jitter and the peak power fluctuations are low, hence the stability is high. Longitudinal mode beating results in random fringes on top of the envelope.

Fig. 3
Fig. 3

Pulse duration versus cavity length. The pump power at 915 nm is varied from 25 W–75 W and the pump power at 976 nm is fixed at 100 W. The points mark experimental results. The dotted lines are the results predicted by Eq. (5) with nSiO2 =1.45. The emission cross section is provided by the manufacture and is σe = 2.5 × 10−25m2. The overlap Γ=0.93 is evaluated by use of a mode-solver. Note that the active fibers used in [2, 12] are different from the fiber used in this study.

Fig. 4
Fig. 4

Calculated pulse duration vs. length of the active fiber (pump absorption efficiency) for passive fiber lengths between 0.1 m and 4 m. It is calculated by Eq. (5) using 75 W pump, an αdB(915 nm) = 2 dB/m, and the same fiber parameters as in Fig. 3.

Fig. 5
Fig. 5

Peak power versus total cavity length for the result with 915 nm pumping. The dashed lines are fits given by Ppeak = 9.1Ppump(1 − exp{−0.23αdBLYb}). The passive length of 1.1 m is indicated by the vertical dashed line.

Fig. 6
Fig. 6

Peak power versus absorbed pump power. The linear fit shows a slope of 9.1 W/W. The result at 915 nm and 105 W is from [2]

Fig. 7
Fig. 7

Calculated pulse duration vs. length of the active fiber for fiber core diameters between 5 μm and 20 μm. The ’x’s corresponds to 10 dB absorption and the peak power will at these points be 615 W for all core diameters. It is calculated by Eq. (5) using 75 W pump and N = 9 × 1025m−3, σa(976 nm) = 2.5 × 10−24m2, Γ = 0.85, Aclad = 0.25π1252μm2, and Lpas = 0.5m.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d n d t = Γ c σ e n ( t ) ϕ ( t ) n ( t ) τ 2 + p
d ϕ d t = Γ c σ e n ( t ) ϕ ( t ) ϕ ( t ) τ c + S c ϕ ( t ) δ ,
d 2 ϕ 1 d t 2 + ( Γ c σ e ϕ s + τ 2 1 ) d ϕ 1 d t + ( Γ c σ e ) 2 n s ϕ s ϕ 1 = 0 .
T R = 2 π τ 2 τ c ( p / p s 1 ) 1 / 2 2 π ( n SiO 2 AL c 0 Γ σ e h ν p P abs ) 1 / 2 ,
t 0 = T R / π 2 .
P peak = β P abs ,

Metrics