Abstract

Bragg gratings have been written in exposed-core microstructured optical fibers for the first time using a femtosecond laser. Second and third order gratings have been written and both show strong reflectivity at 1550 nm, with bandwidths as narrow as 60 pm. Due to the penetration of the guided field outside the fiber the Bragg reflections are sensitive to the external refractive index. As different modes have different sensitivities to refractive index but the same temperature sensitivity the sensor can provide temperature-compensated refractive index measurements. Since these Bragg gratings have been formed by physical ablation, these devices can also be used for high temperature sensing, demonstrated here up to 800°C. The fibers have been spliced to single mode fiber for improved handling and integration with commercial interrogation units.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
    [CrossRef] [PubMed]
  2. X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
    [CrossRef] [PubMed]
  3. V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
    [CrossRef] [PubMed]
  4. C. Caucheteur, V. Voisin, J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
    [CrossRef] [PubMed]
  5. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [CrossRef]
  6. R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011).
    [CrossRef]
  7. T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007).
    [CrossRef] [PubMed]
  8. G. Stewart, W. Jin, B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sensors Actuators B Chem. 38(1-3), 42–47 (1997).
    [CrossRef]
  9. J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [CrossRef] [PubMed]
  10. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
    [CrossRef] [PubMed]
  11. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
    [CrossRef]
  12. W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  13. B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
    [CrossRef]
  14. T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
    [CrossRef]
  15. X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [CrossRef] [PubMed]
  16. P. Zhao, Y. Li, J. Zhang, L. Shi, X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express 20(27), 28625–28630 (2012).
    [CrossRef] [PubMed]
  17. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
    [CrossRef]
  18. H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [CrossRef] [PubMed]
  19. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
    [CrossRef]
  20. A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
    [CrossRef]
  21. M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express 18(9), 9088–9097 (2010).
    [CrossRef] [PubMed]
  22. H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
    [CrossRef]
  23. A. Cusano, D. Paladino, A. Iadicicco, “Microstructured fiber Bragg gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009).
    [CrossRef]
  24. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [CrossRef] [PubMed]
  25. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors 13(3), 3242–3251 (2013).
    [CrossRef] [PubMed]
  26. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [CrossRef] [PubMed]
  27. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  28. Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
    [CrossRef] [PubMed]
  29. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
    [CrossRef] [PubMed]
  30. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
    [CrossRef] [PubMed]
  31. F. M. Cox, R. Lwin, M. C. J. Large, C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
    [CrossRef] [PubMed]
  32. P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
    [CrossRef]
  33. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
    [CrossRef]
  34. W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
    [CrossRef]
  35. G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26(3), S249–S259 (1994).
    [CrossRef]
  36. F. A. Muhammad, G. Stewart, “D-shaped optical fibre design for methane gas sensing,” Electron. Lett. 28(13), 1205–1206 (1992).
    [CrossRef]
  37. S. C. Warren-Smith, S. Afshar, T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
    [CrossRef] [PubMed]
  38. G. D. Marshall, M. Ams, M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006).
    [CrossRef] [PubMed]
  39. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [CrossRef] [PubMed]
  40. L. Xiao, W. Jin, M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007).
    [CrossRef] [PubMed]
  41. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [CrossRef]
  42. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  43. S. C. Warren-Smith, “Fluorescence-based chemical sensing using suspended-core microstructured optical fibres,” PhD Thesis, The University of Adelaide (2010).
  44. F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001).
    [CrossRef]
  45. K.-Y. Chu, A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
    [CrossRef]
  46. Y. Ran, L. Jin, L.-P. Sun, J. Li, B.-O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012).
    [CrossRef] [PubMed]
  47. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [CrossRef]

2014 (2)

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[CrossRef]

2013 (4)

C. Caucheteur, V. Voisin, J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
[CrossRef] [PubMed]

B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
[CrossRef]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors 13(3), 3242–3251 (2013).
[CrossRef] [PubMed]

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

2012 (4)

2011 (3)

R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011).
[CrossRef]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[CrossRef] [PubMed]

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

2010 (3)

2009 (3)

2008 (6)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

S. C. Warren-Smith, S. Afshar, T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[CrossRef] [PubMed]

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

2007 (8)

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[CrossRef] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[CrossRef] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[CrossRef] [PubMed]

T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007).
[CrossRef] [PubMed]

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

L. Xiao, W. Jin, M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007).
[CrossRef] [PubMed]

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

2006 (1)

2005 (3)

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

2001 (1)

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001).
[CrossRef]

1997 (1)

G. Stewart, W. Jin, B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sensors Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

1994 (2)

W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
[CrossRef]

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26(3), S249–S259 (1994).
[CrossRef]

1992 (1)

F. A. Muhammad, G. Stewart, “D-shaped optical fibre design for methane gas sensing,” Electron. Lett. 28(13), 1205–1206 (1992).
[CrossRef]

1962 (1)

K.-Y. Chu, A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[CrossRef]

Adam, J.-L.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Afshar, S.

Albert, J.

Ams, M.

Araújo, F. M.

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001).
[CrossRef]

Asokan, S.

Auguste, J. L.

Bang, O.

Bartelt, H.

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Bise, R. T.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Bjarklev, A.

Blanc, W.

Boussard-Pledel, C.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Brambilla, G.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Brilland, L.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Bruckner, S.

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

Bureau, B.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Caucheteur, C.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

C. Caucheteur, V. Voisin, J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
[CrossRef] [PubMed]

Chaudhari, C.

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Chu, K.-Y.

K.-Y. Chu, A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[CrossRef]

Cordeiro, C. M. B.

Cox, F. M.

Culshaw, B.

G. Stewart, W. Jin, B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sensors Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26(3), S249–S259 (1994).
[CrossRef]

Cusano, A.

A. Cusano, D. Paladino, A. Iadicicco, “Microstructured fiber Bragg gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Damman, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Davis, C.

Demokan, M. S.

Dewynter, V.

Ding, M.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Du, H.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Dussardier, B.

Ebendorff-Heidepriem, H.

Emiliyanov, G.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Fan, X.-D.

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

Fang, X.

Farahi, F.

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001).
[CrossRef]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Feng, J.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Ferdinand, P.

Ferreira, L. A.

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001).
[CrossRef]

Foo, T. C.

Gibson, R.

R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011).
[CrossRef]

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Gordon, J. D.

Guan, B.-O.

Henry, W.

W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
[CrossRef]

Hoffmann, P.

Hoiby, P. E.

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors 13(3), 3242–3251 (2013).
[CrossRef] [PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Iadicicco, A.

A. Cusano, D. Paladino, A. Iadicicco, “Microstructured fiber Bragg gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009).
[CrossRef]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Jensen, J. B.

Jin, L.

Jin, W.

Jovanovic, N.

Kanka, J.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Kito, C.

Kjaer, E. M.

Kobelke, J.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Kostecki, R.

Kou, J.-L.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Kvavle, J.

R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011).
[CrossRef]

Laffont, G.

Large, M. C. J.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Lehmann, H.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Li, J.

Li, Y.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Liao, C. R.

Liao, M.

Lindvold, L.

Liu, Y.

Lou, J.

Lowder, T.

R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011).
[CrossRef]

Lowder, T. L.

Lu, Y.-Q.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Lwin, R.

Marshall, G. D.

McAdam, G.

Mechin, D.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Mégret, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Meng, C.

Monro, T. M.

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[CrossRef] [PubMed]

S. C. Warren-Smith, S. Afshar, T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

Moore, R.

Moore, R. C.

Muhammad, F. A.

F. A. Muhammad, G. Stewart, “D-shaped optical fibre design for methane gas sensing,” Electron. Lett. 28(13), 1205–1206 (1992).
[CrossRef]

Ohishi, Y.

Pagnoux, D.

Paladino, D.

Pedersen, L. H.

Peterka, P.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Phan Huy, M. C.

Pilate, J.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Prashanth, G. R.

Qin, G.

Ran, Y.

Renilkumar, M.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Roy, P.

Ruan, Y.

Russell, P. S. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Santos, J. L.

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001).
[CrossRef]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Schartner, E. P.

Schultz, S.

R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011).
[CrossRef]

Schultz, S. M.

Schuster, K.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Schwuchow, A.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Selfridge, R. H.

Shi, L.

Shivananju, B. N.

Shopova, S. I.

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

Steel, M. J.

Stewart, G.

G. Stewart, W. Jin, B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sensors Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26(3), S249–S259 (1994).
[CrossRef]

F. A. Muhammad, G. Stewart, “D-shaped optical fibre design for methane gas sensing,” Electron. Lett. 28(13), 1205–1206 (1992).
[CrossRef]

Sun, L.-P.

Sun, Y.-Z.

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

Suzuki, T.

Thompson, A. R.

K.-Y. Chu, A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[CrossRef]

Tong, L.

Toupin, P.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Troles, J.

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Varma, M. M.

Voisin, V.

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

C. Caucheteur, V. Voisin, J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
[CrossRef] [PubMed]

Wang, D. N.

Wang, Y.

Warren-Smith, S.

Warren-Smith, S. C.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

White, I. M.

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

Wieduwilt, T.

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

Williams, R. J.

Willsch, R.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Withford, M. J.

Xiao, L.

Xiao, Y.

Xu, F.

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yan, X.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Ye, Z.

Yu, H.

Zhang, A. P.

Zhang, J.

Zhang, X.

Zhao, C.-L.

Zhao, P.

Zhu, H.-Y.

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

Zhu, Y.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Anal. Chim. Acta (1)

X.-D. Fan, I. M. White, S. I. Shopova, H.-Y. Zhu, J. D. Suter, Y.-Z. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1–2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Biosens. Bioelectron. (1)

V. Voisin, J. Pilate, P. Damman, P. Mégret, C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[CrossRef] [PubMed]

Electron. Lett. (1)

F. A. Muhammad, G. Stewart, “D-shaped optical fibre design for methane gas sensing,” Electron. Lett. 28(13), 1205–1206 (1992).
[CrossRef]

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

J. Chem. Eng. Data (1)

K.-Y. Chu, A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[CrossRef]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

P. Toupin, L. Brilland, C. Boussard-Pledel, B. Bureau, D. Mechin, J.-L. Adam, J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[CrossRef]

Meas. Sci. Technol. (2)

T. Wieduwilt, S. Bruckner, H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Meas. Sci. Technol. 22(7), 075201 (2011).
[CrossRef]

F. M. Araújo, L. A. Ferreira, J. L. Santos, F. Farahi, “Temperature and strain insensitive bending measurements with D-type fibre Bragg gratings,” Meas. Sci. Technol. 12(7), 829–833 (2001).
[CrossRef]

Opt. Commun. (1)

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Opt. Express (12)

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[CrossRef] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

S. C. Warren-Smith, S. Afshar, T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

P. Zhao, Y. Li, J. Zhang, L. Shi, X. Zhang, “Nanohole induced microfiber Bragg gratings,” Opt. Express 20(27), 28625–28630 (2012).
[CrossRef] [PubMed]

C. Caucheteur, V. Voisin, J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express 18(9), 9088–9097 (2010).
[CrossRef] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Opt. Lett. (8)

G. D. Marshall, M. Ams, M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006).
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007).
[CrossRef] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[CrossRef] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[CrossRef] [PubMed]

T. L. Lowder, J. D. Gordon, S. M. Schultz, R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007).
[CrossRef] [PubMed]

X. Fang, C. R. Liao, D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[CrossRef] [PubMed]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[CrossRef] [PubMed]

Y. Ran, L. Jin, L.-P. Sun, J. Li, B.-O. Guan, “Bragg gratings in rectangular microfiber for temperature independent refractive index sensing,” Opt. Lett. 37(13), 2649–2651 (2012).
[CrossRef] [PubMed]

Opt. Mater. Express (2)

Opt. Quantum Electron. (2)

W. Henry, “Evanescent field devices: a comparison between tapered optical fibres and polished or D-fibres,” Opt. Quantum Electron. 26(3), S261–S272 (1994).
[CrossRef]

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26(3), S249–S259 (1994).
[CrossRef]

Photonics Technol. Lett. (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” Photonics Technol. Lett. 16(4), 1149–1151 (2004).
[CrossRef]

Proc. SPIE (2)

R. H. Selfridge, S. Schultz, J. Kvavle, T. Lowder, R. Gibson, “Multi-use D-fiber sensors,” Proc. SPIE 7982, 79820P (2011).
[CrossRef]

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Sensors (2)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors 13(3), 3242–3251 (2013).
[CrossRef] [PubMed]

J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu, G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors 12(7), 8861–8876 (2012).
[CrossRef] [PubMed]

Sensors Actuators B Chem. (1)

G. Stewart, W. Jin, B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sensors Actuators B Chem. 38(1-3), 42–47 (1997).
[CrossRef]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

S. C. Warren-Smith, “Fluorescence-based chemical sensing using suspended-core microstructured optical fibres,” PhD Thesis, The University of Adelaide (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron microscope (SEM) image of the exposed-core microstructured optical fiber (a) and the EC-MOF core (b). The fiber has an outer diameter of 200 µm and a core diameter of 12.5 µm.

Fig. 2
Fig. 2

SEM images of the second order femtosecond written Bragg grating. The grating pitch is 1080 nm and the hole widths are approximately 600 nm. (a) The entire fiber cross-section as viewed from above relative to Fig. 1. (b) Zoom-in of the fiber core region, viewed with the same orientation as (a).

Fig. 3
Fig. 3

Top view (a) and side view (b) SEM image of an SMF28e optical fiber (left hand side) spliced to the EC-MOF (right hand side). A splice loss of 3 dB was measured for the fiber with a 3rd order grating.

Fig. 4
Fig. 4

Reflection spectra measured for the second order (a, b) and third order (c, d) gratings. The reflection associated with only the fundamental mode is shown for the second order (b) and the third order (d) gratings.

Fig. 5
Fig. 5

(a) Wavelength shift of the two longest wavelength peaks (Fig. 4(c)) of the third order grating when immersed in different isopropanol solutions. (b) Temperature response of the same two peaks of the third order grating.

Fig. 6
Fig. 6

(a) Experimental measurements (points, from Fig. 5(a)) plotted against the theoretically predicted Bragg reflection (lines). In the theoretical results the reflections include coupling from the fundamental mode to the fundamental mode (black), the TE01 mode (red) and the TM01 mode (blue). (b) Theoretically predicted sensitivity of the Bragg shift for the same modes shown in (a). Results obtained by importing the SEM shown in Fig. 1 into a commercial finite element modeling package (COMSOL 3.4) and then scaling the image relative to the 12.5 µm core diameter. The dashed line indicates the position of the 12.5 µm core diameter fiber used in these experiment and the 1.1 nm/RIU sensitivity experimentally measured.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ B ( n s )=[ n eff,f ( n s )+ n eff,b ( n s )]Λ,
S= d λ B ( n s ) d n s = Λ m [ d n eff,f ( n s ) d n s + d n eff,b ( n s ) d n s ],

Metrics