Abstract

A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
    [CrossRef]
  2. C. Freitag, V. Onuseit, R. Weber, T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Phys. Procedia 39, 171–178 (2012).
    [CrossRef]
  3. R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
    [CrossRef]
  4. D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
    [CrossRef]
  5. A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
    [CrossRef]
  6. P. Morgan, Carbon Fibres and their Composites (CRC Press, 2005).
  7. W. P. Hoffman, W. C. Hurley, P. M. Liu, T. W. Owens, “The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM,” J. Mater. Res. 6(08), 1685–1694 (1991).
    [CrossRef]
  8. F. R. Barnett, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
    [CrossRef]
  9. A. Borghesi and G. Guizzetti, “Graphite (C),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991).
  10. A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85(10), 7404–7410 (1999).
    [CrossRef]
  11. J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter 3(32), 6121–6133 (1991).
    [CrossRef]
  12. D. Ségur, Y. Guillet, B. Audoin, “Picosecond ultrasonics on a single micron carbon fiber,” J. Phys. Conf. Ser. 278, 012020 (2011).
    [CrossRef]

2012 (2)

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

C. Freitag, V. Onuseit, R. Weber, T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Phys. Procedia 39, 171–178 (2012).
[CrossRef]

2011 (2)

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

D. Ségur, Y. Guillet, B. Audoin, “Picosecond ultrasonics on a single micron carbon fiber,” J. Phys. Conf. Ser. 278, 012020 (2011).
[CrossRef]

2010 (1)

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

2008 (1)

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

1999 (1)

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85(10), 7404–7410 (1999).
[CrossRef]

1991 (2)

J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter 3(32), 6121–6133 (1991).
[CrossRef]

W. P. Hoffman, W. C. Hurley, P. M. Liu, T. W. Owens, “The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM,” J. Mater. Res. 6(08), 1685–1694 (1991).
[CrossRef]

1976 (1)

F. R. Barnett, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

Audoin, B.

D. Ségur, Y. Guillet, B. Audoin, “Picosecond ultrasonics on a single micron carbon fiber,” J. Phys. Conf. Ser. 278, 012020 (2011).
[CrossRef]

Barnett, F. R.

F. R. Barnett, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

Berger, P.

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

Djurisic, A. B.

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85(10), 7404–7410 (1999).
[CrossRef]

Emmelmann, C.

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

Freitag, C.

C. Freitag, V. Onuseit, R. Weber, T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Phys. Procedia 39, 171–178 (2012).
[CrossRef]

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

Goeke, A.

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

Graf, T.

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

C. Freitag, V. Onuseit, R. Weber, T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Phys. Procedia 39, 171–178 (2012).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

Guillet, Y.

D. Ségur, Y. Guillet, B. Audoin, “Picosecond ultrasonics on a single micron carbon fiber,” J. Phys. Conf. Ser. 278, 012020 (2011).
[CrossRef]

Haferkamp, H.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Hafner, M.

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

Herzog, D.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Hoffman, W. P.

W. P. Hoffman, W. C. Hurley, P. M. Liu, T. W. Owens, “The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM,” J. Mater. Res. 6(08), 1685–1694 (1991).
[CrossRef]

Hurley, W. C.

W. P. Hoffman, W. C. Hurley, P. M. Liu, T. W. Owens, “The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM,” J. Mater. Res. 6(08), 1685–1694 (1991).
[CrossRef]

Jaeschke, P.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Kononenko, T. V.

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

Lekner, J.

J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter 3(32), 6121–6133 (1991).
[CrossRef]

Li, E. H.

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85(10), 7404–7410 (1999).
[CrossRef]

Liu, P. M.

W. P. Hoffman, W. C. Hurley, P. M. Liu, T. W. Owens, “The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM,” J. Mater. Res. 6(08), 1685–1694 (1991).
[CrossRef]

Meier, O.

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

Michalowksi, A.

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

Norr, M. K.

F. R. Barnett, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

Onuseit, V.

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

C. Freitag, V. Onuseit, R. Weber, T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Phys. Procedia 39, 171–178 (2012).
[CrossRef]

Owens, T. W.

W. P. Hoffman, W. C. Hurley, P. M. Liu, T. W. Owens, “The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM,” J. Mater. Res. 6(08), 1685–1694 (1991).
[CrossRef]

Ségur, D.

D. Ségur, Y. Guillet, B. Audoin, “Picosecond ultrasonics on a single micron carbon fiber,” J. Phys. Conf. Ser. 278, 012020 (2011).
[CrossRef]

Weber, R.

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

C. Freitag, V. Onuseit, R. Weber, T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Phys. Procedia 39, 171–178 (2012).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

Composites (1)

F. R. Barnett, M. K. Norr, “A three-dimensional structural model for a high modulus pan-based carbon fibres,” Composites 7(2), 93–99 (1976).
[CrossRef]

Int. J. Mach. Tools Manuf. (1)

D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, “Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP,” Int. J. Mach. Tools Manuf. 48(12-13), 1464–1473 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. B. Djurisic, E. H. Li, “Optical properties of graphite,” J. Appl. Phys. 85(10), 7404–7410 (1999).
[CrossRef]

J. Mater. Res. (1)

W. P. Hoffman, W. C. Hurley, P. M. Liu, T. W. Owens, “The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM,” J. Mater. Res. 6(08), 1685–1694 (1991).
[CrossRef]

J. Phys. Condens. Matter (1)

J. Lekner, “Reflection and refraction by uniaxial crystals,” J. Phys. Condens. Matter 3(32), 6121–6133 (1991).
[CrossRef]

J. Phys. Conf. Ser. (1)

D. Ségur, Y. Guillet, B. Audoin, “Picosecond ultrasonics on a single micron carbon fiber,” J. Phys. Conf. Ser. 278, 012020 (2011).
[CrossRef]

Phys. Procedia (4)

A. Goeke, C. Emmelmann, “Influence of laser cutting parameters on CFRP part quality,” Phys. Procedia 5, 253–258 (2010).
[CrossRef]

R. Weber, C. Freitag, T. V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, “Short-pulse laser processing of CFRP,” Phys. Procedia 39, 137–146 (2012).
[CrossRef]

C. Freitag, V. Onuseit, R. Weber, T. Graf, “High-speed observation of the heat flow in CFRP during laser processing,” Phys. Procedia 39, 171–178 (2012).
[CrossRef]

R. Weber, M. Hafner, A. Michalowksi, T. Graf, “Minimum damage in CFRP laser processing,” Phys. Procedia 12(2), 302–307 (2011).
[CrossRef]

Other (2)

P. Morgan, Carbon Fibres and their Composites (CRC Press, 2005).

A. Borghesi and G. Guizzetti, “Graphite (C),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Values of n and k of the complex refractive index of graphite for Ec derived from experimental data presented in [9] and the model reported in [10]. b) Corresponding absorptivity of graphite for different wavelengths for radiation at normal incidence.

Fig. 2
Fig. 2

a) The incident radiation hits the surface of the carbon fibers at different angles of incidence depending on the position with respect to the fiber axis. b) Absorptivity on a carbon fiber with a radius of 4 µm at a wavelength of 515 nm for light polarized parallel and perpendicular to axis of the carbon fiber, respectively.

Fig. 3
Fig. 3

Average absorptance of a single carbon fiber as a function of wavelength. The surrounding medium is air.

Fig. 4
Fig. 4

a) Arrangement of carbon fibers used to calculate the absorptance of multiple fibers. Exemplarily the multiple reflection of a light ray incident at x = 3,764 µm is shown. b) Average absorptance for multiple carbon fibers calculated by means of ray tracing for different wavelengths.

Fig. 5
Fig. 5

a) Absorptivity on a single carbon fiber with a radius of 4 µm surrounded by matrix material with a refractive index of n = 1.55 at a wavelength of 1064 nm for light polarized parallel and perpendicular to axis of the carbon fiber, respectively. b) Average absorptance at normal incidence on CFRP with RIM 135 as matrix material for different wavelengths calculated with the simplified model discussed in the text.

Fig. 6
Fig. 6

a,b) Images taken with an optical microscope. A polarization filter was placed in front of the camera system. Figure 6(a) shows an image taken with light polarized perpendicular to the carbon fiber axis. Figure 6(b) shows an image taken with light polarized parallel to the carbon fiber axis.

Metrics