Abstract

We experimentally demonstrate a linearly configured Brillouin optical correlation domain analysis (BOCDA) system enhanced by a differential measurement scheme. On-off control of the pump phase modulation with an intentional loss at the end of a fiber under test is applied for the acquisition of a Brillouin gain spectrum. This application leads to a four-fold enhancement of the spatial resolution and doubling of the measurement range in comparison with the former system under the same modulation parameters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
    [CrossRef]
  2. X. Bao, D. J. Webb, D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993).
    [CrossRef] [PubMed]
  3. M. Nikles, L. Thevenaz, P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [CrossRef] [PubMed]
  4. M. N. Alahbabi, Y. T. Cho, T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [CrossRef]
  5. K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).
  6. K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  7. K. Y. Song, K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
    [CrossRef]
  8. K. Y. Song, K. Hotate, “Brillouin optical correlation domain analysis in linear configuration,” IEEE Photon. Technol. Lett. 20(24), 2150–2152 (2008).
    [CrossRef]
  9. W. Zou, Z. He, K. Hotate, “Single-end access correlation-domain distributed fiber-optic sensor based on stimulated Brillouin scattering,” J. Lightwave Technol. 28(18), 2736–2742 (2010).
    [CrossRef]
  10. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, S. B. Lee, “Differential measurement scheme for Brillouin Optical Correlation Domain Analysis,” Opt. Express 20(24), 27094–27101 (2012).
    [CrossRef] [PubMed]
  11. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, S. B. Lee, “Bidirectional measurement for Brillouin optical correlation domain analysis,” Opt. Express 20(10), 11091–11096 (2012).
    [CrossRef] [PubMed]

2012 (2)

2010 (1)

2008 (1)

K. Y. Song, K. Hotate, “Brillouin optical correlation domain analysis in linear configuration,” IEEE Photon. Technol. Lett. 20(24), 2150–2152 (2008).
[CrossRef]

2007 (1)

K. Y. Song, K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

2006 (1)

2005 (1)

2000 (1)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

1996 (1)

1993 (1)

1989 (1)

T. Horiguchi, M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Alahbabi, M. N.

Bao, X.

Cho, Y. T.

Hasegawa, T.

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

He, Z.

Horiguchi, T.

T. Horiguchi, M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Hotate, K.

W. Zou, Z. He, K. Hotate, “Single-end access correlation-domain distributed fiber-optic sensor based on stimulated Brillouin scattering,” J. Lightwave Technol. 28(18), 2736–2742 (2010).
[CrossRef]

K. Y. Song, K. Hotate, “Brillouin optical correlation domain analysis in linear configuration,” IEEE Photon. Technol. Lett. 20(24), 2150–2152 (2008).
[CrossRef]

K. Y. Song, K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Jackson, D. A.

Jeong, J. H.

Jeong, J.-M.

Lee, K.

Lee, S. B.

Newson, T. P.

Nikles, M.

Robert, P. A.

Song, K. Y.

Tateda, M.

T. Horiguchi, M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

Thevenaz, L.

Webb, D. J.

Zou, W.

IEEE Photon. Technol. Lett. (2)

K. Y. Song, K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, K. Hotate, “Brillouin optical correlation domain analysis in linear configuration,” IEEE Photon. Technol. Lett. 20(24), 2150–2152 (2008).
[CrossRef]

IEICE Trans. Electron. (1)

K. Hotate, T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

J. Lightwave Technol. (2)

T. Horiguchi, M. Tateda, “BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol. 7(8), 1170–1176 (1989).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Single-end access correlation-domain distributed fiber-optic sensor based on stimulated Brillouin scattering,” J. Lightwave Technol. 28(18), 2736–2742 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Operation principle of the differential measurement in the BOCDA: LIA, lock-in amplifier.

Fig. 2
Fig. 2

Schematics of the linearly-configured BOCDA systems based on (a) beat lock-in detection, (b) PMF with PBS, and (c) differential measurement. Note that L corresponds to the maximum range of an ordinary BOCDA system with loop configuration under the same modulation parameters: IM, intensity modulator; PM, phase modulator.

Fig. 3
Fig. 3

(a) Experimental setup for the proposed BOCDA system and (b) Structure of the FUT: SSBM, single-sideband modulator; MSS, microwave sweep synthesizer; PSW, polarization switch; PM, phase modulator; FG, function generator; EDFA, erbium-doped fiber amplifier; FBG, fiber Bragg grating; LIA, lock-in amplifier.

Fig. 4
Fig. 4

BFS along the FUT.

Fig. 5
Fig. 5

(a) 3D plot of the measurement BGS, (b)- (d) zoomed view of 3D plot at ~75 m, ~50 m and ~20 m and (e)-(f) BGS at 75 m, 50 m and 20 m.

Fig. 6
Fig. 6

Variation of BGS for the different reflectivity of the FUT end.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δz= V g Δ ν B 2π f m Δf
L= V g 2 f m
I d =R I s (ν) e g 1 R I p Δz e g 2 I p Δz +R I p (ν+ ν B ) e g 1 R I s Δz e g 2 I s Δz
I d R I s (ν)(1+ g 1 R I p Δz+ g 2 I p Δz)
I d R I s (ν)(1+ g 2 I p Δz)

Metrics