Abstract

Abstract: Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
    [CrossRef] [PubMed]
  2. W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
    [CrossRef] [PubMed]
  3. M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. 62(8), 106–110 (1962).
  4. G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
    [CrossRef] [PubMed]
  5. M. H. Horman, H. H. M. Chau, “Zone plate theory based on holography,” Appl. Opt. 6(2), 317–322 (1967).
    [CrossRef] [PubMed]
  6. H. H. M. Chau, “Zone plates produced optically,” Appl. Opt. 8(6), 1209–1211 (1969).
    [CrossRef] [PubMed]
  7. H. Ming, Y. Wu, J. P. Xie, T. Nakajima, “Fabrication of holographic microlenses using a deep UV lithographed zone plate,” Appl. Opt. 29(34), 5111–5114 (1990).
    [CrossRef] [PubMed]
  8. G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984).
    [CrossRef]
  9. Y. B. Yun, M. R. Howells, “High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication,” J. Opt. Soc. Am. A 4(1), 34–40 (1987).
    [CrossRef]
  10. J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
    [CrossRef] [PubMed]
  11. S. H. Lee, P. Naulleau, K. A. Goldberg, C. H. Cho, S. Jeong, J. Bokor, “Extreme-ultraviolet lensless Fourier-transform holography,” Appl. Opt. 40(16), 2655–2661 (2001).
    [CrossRef] [PubMed]
  12. P. W. Wachulak, R. A. Bartels, M. C. Marconi, C. S. Menoni, J. J. Rocca, Y. Lu, B. Parkinson, “Sub 400 nm spatial resolution extreme ultraviolet holography with a table top laser,” Opt. Express 14(21), 9636–9642 (2006).
    [CrossRef] [PubMed]
  13. H. H. Solak, C. David, J. Gobrecht, “Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography,” Appl. Phys. Lett. 85(14), 2700–2702 (2004).
    [CrossRef]
  14. Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
    [CrossRef]
  15. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
    [CrossRef] [PubMed]
  16. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
    [CrossRef] [PubMed]
  17. T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12(6), 1271–1275 (1975).
    [CrossRef]
  18. H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D Appl. Phys. 39(10), R171–R188 (2006).
    [CrossRef]
  19. B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
    [CrossRef] [PubMed]
  20. S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
    [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  22. http://henke.lbl.gov/optical_constants/ .
  23. J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
    [CrossRef]
  24. http://www.emexplorer.net/index.html .
  25. K. A. Goldberg, E. Tejnil, J. Bokor, “A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry,” OSA Trends Opt. Photo. 4, 133–137 (1996).
  26. C. Bergemann, H. Keymeulen, J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91(20), 204801 (2003).
    [CrossRef] [PubMed]
  27. R. H. Clarke and H. Brown, Diffraction Theory and Antennas (John Wiley, 1980).
  28. S. Silver, Microwave Antenna Theory and Design (Institute of Electrical and Electronics Engineers, 1984) pp 158–159.
  29. B. Qi, H. Chen, N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41(7), 1565–1567 (2002).
    [CrossRef]

2011 (1)

B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[CrossRef] [PubMed]

2008 (1)

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
[CrossRef]

2007 (3)

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
[CrossRef]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[CrossRef] [PubMed]

2004 (1)

H. H. Solak, C. David, J. Gobrecht, “Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography,” Appl. Phys. Lett. 85(14), 2700–2702 (2004).
[CrossRef]

2003 (1)

C. Bergemann, H. Keymeulen, J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91(20), 204801 (2003).
[CrossRef] [PubMed]

2002 (1)

B. Qi, H. Chen, N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41(7), 1565–1567 (2002).
[CrossRef]

2001 (1)

1996 (1)

K. A. Goldberg, E. Tejnil, J. Bokor, “A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry,” OSA Trends Opt. Photo. 4, 133–137 (1996).

1995 (1)

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

1994 (1)

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

1990 (1)

1987 (2)

Y. B. Yun, M. R. Howells, “High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication,” J. Opt. Soc. Am. A 4(1), 34–40 (1987).
[CrossRef]

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

1984 (1)

G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984).
[CrossRef]

1975 (1)

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12(6), 1271–1275 (1975).
[CrossRef]

1969 (1)

1967 (1)

1962 (1)

M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. 62(8), 106–110 (1962).

1950 (1)

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
[CrossRef] [PubMed]

Anderson, E. H.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[CrossRef] [PubMed]

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

Attwood, D. T.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[CrossRef] [PubMed]

Bartels, R. A.

Bergemann, C.

C. Bergemann, H. Keymeulen, J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91(20), 204801 (2003).
[CrossRef] [PubMed]

Bokor, J.

S. H. Lee, P. Naulleau, K. A. Goldberg, C. H. Cho, S. Jeong, J. Bokor, “Extreme-ultraviolet lensless Fourier-transform holography,” Appl. Opt. 40(16), 2655–2661 (2001).
[CrossRef] [PubMed]

K. A. Goldberg, E. Tejnil, J. Bokor, “A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry,” OSA Trends Opt. Photo. 4, 133–137 (1996).

Brainard, R.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Brown, S. B.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

Campbell, E. M.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

Cerrina, F.

Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
[CrossRef]

Chang, T. H. P.

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12(6), 1271–1275 (1975).
[CrossRef]

Chao, W.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[CrossRef] [PubMed]

Chau, H. H. M.

Chen, H.

B. Qi, H. Chen, N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41(7), 1565–1567 (2002).
[CrossRef]

Cheng, Y. C.

Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
[CrossRef]

Cho, C. H.

Christ, O.

G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984).
[CrossRef]

David, C.

B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[CrossRef] [PubMed]

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
[CrossRef]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

H. H. Solak, C. David, J. Gobrecht, “Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography,” Appl. Phys. Lett. 85(14), 2700–2702 (2004).
[CrossRef]

Dong, N.

B. Qi, H. Chen, N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41(7), 1565–1567 (2002).
[CrossRef]

Ekinci, Y.

B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[CrossRef] [PubMed]

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, “Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography,” Appl. Phys. Lett. 85(14), 2700–2702 (2004).
[CrossRef]

Goldberg, K. A.

S. H. Lee, P. Naulleau, K. A. Goldberg, C. H. Cho, S. Jeong, J. Bokor, “Extreme-ultraviolet lensless Fourier-transform holography,” Appl. Opt. 40(16), 2655–2661 (2001).
[CrossRef] [PubMed]

K. A. Goldberg, E. Tejnil, J. Bokor, “A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry,” OSA Trends Opt. Photo. 4, 133–137 (1996).

Goldfarb, D.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Guttmann, P.

G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984).
[CrossRef]

Haddad, W. S.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

Harteneck, B. D.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[CrossRef] [PubMed]

Horman, M. H.

Howells, M.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Howells, M. R.

Isoyan, A.

Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
[CrossRef]

Jacobsen, C.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Jefimovs, K.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

Jeong, S.

Keymeulen, H.

C. Bergemann, H. Keymeulen, J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91(20), 204801 (2003).
[CrossRef] [PubMed]

Khan, M.

Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
[CrossRef]

Kirk, E.

B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[CrossRef] [PubMed]

Kirz, J.

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Koay, C. S.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Langner, A.

B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[CrossRef] [PubMed]

Lee, S. H.

Levesque, R. A.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

Liddle, J. A.

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[CrossRef] [PubMed]

Lu, Y.

Mackey, J.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Marconi, M. C.

Matthews, D. L.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

McNulty, I.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

Menoni, C. S.

Ming, H.

Montgomery, W.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Nakajima, T.

Nassar, R. A.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Naulleau, P.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

S. H. Lee, P. Naulleau, K. A. Goldberg, C. H. Cho, S. Jeong, J. Bokor, “Extreme-ultraviolet lensless Fourier-transform holography,” Appl. Opt. 40(16), 2655–2661 (2001).
[CrossRef] [PubMed]

Nilson, D. G.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

Päivänranta, B.

B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[CrossRef] [PubMed]

Parkinson, B.

Petrillo, K.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Pierson, B.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Pilvi, T.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

Qi, B.

B. Qi, H. Chen, N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41(7), 1565–1567 (2002).
[CrossRef]

Raabe, J.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

Ritala, M.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

Rocca, J. J.

Rogers, G. L.

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
[CrossRef] [PubMed]

Rudolph, D.

G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984).
[CrossRef]

Sahoo, P. K.

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
[CrossRef]

Sarkar, S. S.

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
[CrossRef]

Schmahl, G.

G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984).
[CrossRef]

Solak, H. H.

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
[CrossRef]

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D Appl. Phys. 39(10), R171–R188 (2006).
[CrossRef]

H. H. Solak, C. David, J. Gobrecht, “Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography,” Appl. Phys. Lett. 85(14), 2700–2702 (2004).
[CrossRef]

Spear-Alfonso, K.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Stone, G. F.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

Tejnil, E.

K. A. Goldberg, E. Tejnil, J. Bokor, “A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry,” OSA Trends Opt. Photo. 4, 133–137 (1996).

Thackeray, J. W.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Trebes, J. E.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

Van der Veen, J. F.

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
[CrossRef]

C. Bergemann, H. Keymeulen, J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91(20), 204801 (2003).
[CrossRef] [PubMed]

Vila-Comamala, J.

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

Wachulak, P. W.

Wallace, J.

Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
[CrossRef]

Wallow, T.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Wei, Y. Y.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Whelan, D. A.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

Wood, O.

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

Wu, Y.

Xie, J. P.

Yang, L.

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

Young, M.

M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. 62(8), 106–110 (1962).

Yun, Y. B.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

H. H. Solak, C. David, J. Gobrecht, “Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography,” Appl. Phys. Lett. 85(14), 2700–2702 (2004).
[CrossRef]

Y. C. Cheng, A. Isoyan, J. Wallace, M. Khan, F. Cerrina, “Extreme ultraviolet holographic lithography: Initial results,” Appl. Phys. Lett. 90(2), 023116 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

M. Young, “Zone plates and their aberrations,” J. Opt. Soc. Am. 62(8), 106–110 (1962).

J. Opt. Soc. Am. A (1)

J. Photopolym. Sci. Technol. (1)

J. W. Thackeray, R. A. Nassar, K. Spear-Alfonso, R. Brainard, D. Goldfarb, T. Wallow, Y. Y. Wei, W. Montgomery, K. Petrillo, O. Wood, C. S. Koay, J. Mackey, P. Naulleau, B. Pierson, H. H. Solak, “Pathway to sub-30nm resolution in EUV lithography,” J. Photopolym. Sci. Technol. 20(3), 411–418 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. H. Solak, “Nanolithography with coherent extreme ultraviolet light,” J. Phys. D Appl. Phys. 39(10), R171–R188 (2006).
[CrossRef]

J. Vac. Sci. Technol. (1)

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12(6), 1271–1275 (1975).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. Van der Veen, “Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region,” J. Vac. Sci. Technol. B 26(6), 2160–2163 (2008).
[CrossRef]

Nanotechnology (1)

B. Päivänranta, A. Langner, E. Kirk, C. David, Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology 22(37), 375302 (2011).
[CrossRef] [PubMed]

Nature (2)

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005).
[CrossRef] [PubMed]

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166(4214), 237 (1950).
[CrossRef] [PubMed]

Opt. Eng. (1)

B. Qi, H. Chen, N. Dong, “Wavefront fitting of interferograms with Zernike polynomials,” Opt. Eng. 41(7), 1565–1567 (2002).
[CrossRef]

Opt. Express (1)

OSA Trends Opt. Photo. (1)

K. A. Goldberg, E. Tejnil, J. Bokor, “A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry,” OSA Trends Opt. Photo. 4, 133–137 (1996).

Phys. Rev. Lett. (2)

C. Bergemann, H. Keymeulen, J. F. van der Veen, “Focusing x-ray beams to nanometer dimensions,” Phys. Rev. Lett. 91(20), 204801 (2003).
[CrossRef] [PubMed]

K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007).
[CrossRef] [PubMed]

Q. Rev. Biophys. (1)

J. Kirz, C. Jacobsen, M. Howells, “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28(1), 33–130 (1995).
[CrossRef] [PubMed]

Science (2)

W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, L. Yang, “Ultrahigh-resolution x-ray tomography,” Science 266(5188), 1213–1215 (1994).
[CrossRef] [PubMed]

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238(4826), 517–519 (1987).
[CrossRef] [PubMed]

X Ray Microsc. (1)

G. Schmahl, D. Rudolph, P. Guttmann, O. Christ, “Zone plates for x-ray microscopy,” X Ray Microsc. 43, 63–74 (1984).
[CrossRef]

Other (5)

R. H. Clarke and H. Brown, Diffraction Theory and Antennas (John Wiley, 1980).

S. Silver, Microwave Antenna Theory and Design (Institute of Electrical and Electronics Engineers, 1984) pp 158–159.

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

http://henke.lbl.gov/optical_constants/ .

http://www.emexplorer.net/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the holographic exposure technique. EUV plane wave incident on the mask (membrane containing pinhole) undergoes diffraction through the pinhole and interferes with transmitted plane wave to form zone plate pattern that is recorded in sensitive resist material coated on a substrate placed at a distance z from the mask. r is the radial coordinate in the image plane.

Fig. 2
Fig. 2

SEM images of pinholes (a,c,e) fabricated on a mask and the corresponding zone plates recorded in an EUV exposure (same exposure dose and mask-substrate distance).

Fig. 3
Fig. 3

SEM images of a set of zone plates obtained from a single pinhole for a fixed mask-substrate distance for different exposure dose. (a) and (b) are underexposed whereas (d) is overexposed. (c) shows the image where the exposure dose is optimal for printing a large number of zones. The incremental dose step in the consecutive images is 12%.

Fig. 4
Fig. 4

SEM image of the micro-zone plate patterns recorded on chemically amplified resist. The outer zone width is comparable to half of the pinhole size. (inset) SEM image of the pinhole with Au thin film on the top used for the fabrication of the zone plates.

Fig. 5
Fig. 5

(a) Modulation (μ) as a function of NA at the image plane placed at z = z0 where the on-axis modulation is maximum. NA is normalized by NA0 = 1.22λ/d that corresponds to the NA for principal Airy lobe. The modulation reduces to zero at the boundary of the Airy lobes. A threshold set on the modulation (usually μ = 0.5) shows that the radius of the zone plate is limited by the threshold. (b) Contour plot of the modulation (μ) as a function of normalized distance from the pinhole, (λ/a2) z and normalized radial distance, r/a. The vertical line marks the position zo, where the on-axis modulation is maximum. The two dashed lines show the position of the first Airy minimum. The region where the modulation is below 50% is shown in gray.

Fig. 6
Fig. 6

The component of the Poynting vector along the propagation direction (arrow) over the cross section of the Au layer along the polarization direction of the incident radiation for different pinhole diameters. The transmission through the pinhole is severely reduced for smaller pinholes due to loss of confinement.

Fig. 7
Fig. 7

Outward energy flow at the exit plane of the Au layer normalized to the pinhole area is plotted against the pinhole diameter (d). A sharp deviation from proportional behavior (flux ∝ area) for pinholes with small diameters is observed.

Fig. 8
Fig. 8

Residual optical path difference (OPD) from an ideal spherical wave at the image plane (z = 100 μm) for different pinhole diameters.

Fig. 9
Fig. 9

Schematic of the diffraction limited and longitudinal coherence limited regions in front of the mask. The diffraction limited region defined by the principal Airy lobe where θmin is the diffraction angle corresponding to the first minimum of the Airy function. In the diffraction limited region the zone plate diameter is proportional to the distance between the mask and the image plane whereas in the coherence limited region the number of zones is fixed (λ/Δλ) and is given by the spectral width (Δλ) of the incident radiation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I d ( r,z )= ( π a 2 λz ) 2 [ 2 J 1 ( kar/z ) ( kar/z ) ] 2
I t =exp( 2βkΔt )
μ(r,z)= 2 I t I d I t + I d
z 0 = π a 2 λ e βkΔt
D 2 z λ 2 Δλ
a=Δ r N .
Δt= 1 2βk ln( 12.5s ),
τ=6.25s D 0 I 0 .
τ=25 N 2 D 0 I 0 .

Metrics